IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4221-d1396686.html
   My bibliography  Save this article

Optimal Substation Placement: A Paradigm for Advancing Electrical Grid Sustainability

Author

Listed:
  • Marius Eugen Țiboacă-Ciupăgeanu

    (Power Engineering Faculty, Science and Technology University POLITEHNICA of Bucharest, 060042 Bucharest, Romania)

  • Dana Alexandra Țiboacă-Ciupăgeanu

    (Independent Researcher, 061981 Bucharest, Romania)

Abstract

The critical importance of optimal substation placement intensifies as the world experiences sustained economic expansion and firmly pursues the decarbonization process. This paper develops an integrative approach to determining the optimal location for a new substation considering the evolving power framework. To this end, a projected 2% national load growth is taken into account, in accordance with the foresight of the Romanian authorities, emphasizing the need to place new substations to enhance the grid’s sustainability. Leveraging the Weibull distribution, a dataset is generated to simulate the anticipated load increase, starting from real power datasets in Romania. Two algorithms are designed for optimal substation positioning: geometric (center-of-gravity-based) and machine learning (K-means clustering). The primary comparison criterion is the minimization of power losses during energy distribution. The results reveal the machine learning approach (i.e., K-means clustering) as the superior alternative, attaining a 60% success rate in minimizing the power losses. However, acknowledging computational constraints, the concurrent utilization of both algorithms is advocated for optimal substation location selection, indicating a potential improvement in outcomes. This study emphasizes the critical need for advanced algorithms, stressing their role in mitigating power losses and optimizing energy utilization in response to evolving load patterns and sustainability goals.

Suggested Citation

  • Marius Eugen Țiboacă-Ciupăgeanu & Dana Alexandra Țiboacă-Ciupăgeanu, 2024. "Optimal Substation Placement: A Paradigm for Advancing Electrical Grid Sustainability," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4221-:d:1396686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesus Beyza & Jose M. Yusta, 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures," Energies, MDPI, vol. 14(7), pages 1-18, April.
    2. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Centralized vs. Decentralized Electric Grid Resilience Analysis Using Leontief’s Input–Output Model," Energies, MDPI, vol. 17(6), pages 1-21, March.
    3. Xueyang Zhang & Shengjun Huang & Qingxia Li & Rui Wang & Tao Zhang & Bo Guo, 2024. "Nodal Invulnerability Recovery Considering Power Generation Balance: A Bi-Objective Robust Optimization Framework," Mathematics, MDPI, vol. 12(12), pages 1-19, June.
    4. Ulaa AlHaddad & Abdullah Basuhail & Maher Khemakhem & Fathy Elbouraey Eassa & Kamal Jambi, 2023. "Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    5. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    6. Wu, Chuantao & Wang, Tao & Zhou, Dezhi & Cao, Shankang & Sui, Quan & Lin, Xiangning & Li, Zhengtian & Wei, Fanrong, 2023. "A distributed restoration framework for distribution systems incorporating electric buses," Applied Energy, Elsevier, vol. 331(C).
    7. Zribi, Wissal & Boufateh, Talel & Guesmi, Khaled, 2023. "Climate uncertainty effects on bitcoin ecological footprint through cryptocurrency environmental attention," Finance Research Letters, Elsevier, vol. 58(PD).
    8. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    9. Ahmed Daeli & Salman Mohagheghi, 2022. "Power Grid Infrastructural Resilience against Extreme Events," Energies, MDPI, vol. 16(1), pages 1-17, December.
    10. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Joyce Nyuma Chivunga & Zhengyu Lin & Richard Blanchard, 2023. "Power Systems’ Resilience: A Comprehensive Literature Review," Energies, MDPI, vol. 16(21), pages 1-31, October.
    12. Cesar A. Vega Penagos & Jan L. Diaz & Omar F. Rodriguez-Martinez & Fabio Andrade & Adriana C. Luna, 2023. "Metrics and Strategies Used in Power Grid Resilience," Energies, MDPI, vol. 17(1), pages 1-16, December.
    13. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    14. Adella Grace Migisha & Joseph M. Ntayi & Faisal Buyinza & Livingstone Senyonga & Joyce Abaliwano & Muyiwa S. Adaramola, 2023. "Review of Concepts and Determinants of Grid Electricity Reliability," Energies, MDPI, vol. 16(21), pages 1-21, October.
    15. Armin Razmjoo & Mostafa Rezaei & Seyedali Mirjalili & Meysam Majidi Nezhad & Giuseppe Piras, 2021. "Development of Sustainable Energy Use with Attention to Fruitful Policy," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    16. Miao, Huiying & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "Multi-criteria decision analysis for the planning of island microgrid system: A case study of Yongxing island, China," Energy, Elsevier, vol. 284(C).
    17. Tobajas, Javier & Garcia-Torres, Felix & Roncero-Sánchez, Pedro & Vázquez, Javier & Bellatreche, Ladjel & Nieto, Emilio, 2022. "Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control," Applied Energy, Elsevier, vol. 306(PB).
    18. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Mohammed J. F. Alenazi, 2023. "ENRN: A System for Evaluating Network Resilience against Natural Disasters," Mathematics, MDPI, vol. 11(20), pages 1-23, October.
    20. Huangjie Gong & Dan M. Ionel, 2021. "Improving the Power Outage Resilience of Buildings with Solar PV through the Use of Battery Systems and EV Energy Storage," Energies, MDPI, vol. 14(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4221-:d:1396686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.