IDEAS home Printed from https://ideas.repec.org/a/arv/journl/v1y2023i1p13-22.html
   My bibliography  Save this article

Making Risk Evaluation for The Renewable Energy Investments in The Telecommunications Sector with SF TOP-DEMATEL Methodology

Author

Listed:
  • Serkan Eti
  • YaÅŸar Gökalp
  • Alexey Mikhaylov

Abstract

Energy has an important role in the telecommunications sector. Therefore, it would be advantageous for telecommunication enterprises to produce their own energy. One of the best ways for these companies to produce their energy is renewable energy. However, there are some risks for them to make renewable energy investments. It is vital to manage these risks without incurring high costs. Accordingly, the purpose of this study is to conduct a priority analysis of the critical risks of renewable energy investment in the telecommunications sector. In this context, five different risks are analyzed with the SF TOP DEMATEL method. As a result of the analysis, the provision of uninterrupted energy is found as the most critical risk with the weight of 0.2093. Other important risks are defined as cost and updateability. To meet the energy needs of the telecommunications sector by making renewable energy investment, it would be appropriate to take action to ensure an uninterrupted energy supply. For this purpose, hybrid energy models and energy storage technologies are reasonable solutions.

Suggested Citation

  • Serkan Eti & YaÅŸar Gökalp & Alexey Mikhaylov, 2023. "Making Risk Evaluation for The Renewable Energy Investments in The Telecommunications Sector with SF TOP-DEMATEL Methodology," Journal of Sustainable Development Issues (JOSDI), SDIjournals, vol. 1(1), pages 13-22, December.
  • Handle: RePEc:arv:journl:v:1:y:2023:i:1:p:13-22
    DOI: 10.62433/josdi.v1i1.11
    as

    Download full text from publisher

    File URL: https://journalsdi.com/index.php/jsdi/article/view/11/2
    Download Restriction: no

    File URL: https://journalsdi.com/index.php/jsdi/article/view/11
    Download Restriction: no

    File URL: https://libkey.io/10.62433/josdi.v1i1.11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siddik, Abu Bakkar & Khan, Samiha & Khan, Uzma & Yong, Li & Murshed, Muntasir, 2023. "The role of renewable energy finance in achieving low-carbon growth: contextual evidence from leading renewable energy-investing countries," Energy, Elsevier, vol. 270(C).
    2. Yan, Chen & Murshed, Muntasir & Ozturk, Ilhan & Siddik, Abu Bakkar & Ghardallou, Wafa & Khudoykulov, Khurshid, 2023. "Decarbonization blueprints for developing countries: The role of energy productivity, renewable energy, and financial development in environmental improvement," Resources Policy, Elsevier, vol. 83(C).
    3. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    4. Crentsil, Aba Obrumah & Asuman, Derek & Fenny, Ama Pokuaa, 2019. "Assessing the determinants and drivers of multidimensional energy poverty in Ghana," Energy Policy, Elsevier, vol. 133(C).
    5. Kabiru Hannafi Ibrahim & Rossanto Dwi Handoyo & Wasiaturrahma Wasiaturrahma & Tamat Sarmidi, 2022. "Services trade and infrastructure development: Evidence from African countries," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2143147-214, December.
    6. Xiuqin Zhang & Xudong Shi & Yasir Khan & Taimoor Hassan & Mohamed Marie, 2023. "Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    8. Dorahaki, Sobhan & Rashidinejad, Masoud & Fatemi Ardestani, Seyed Farshad & Abdollahi, Amir & Salehizadeh, Mohammad Reza, 2023. "An integrated model for citizen energy communities and renewable energy communities based on clean energy package: A two-stage risk-based approach," Energy, Elsevier, vol. 277(C).
    9. Aggelos Skoufis & Georgios Chatzithanasis & Georgia Dede & Evangelia Filiopoulou & Thomas Kamalakis & Christos Michalakelis, 2023. "Technoeconomic assessment of an FTTH network investment in the Greek telecommunications market," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(2), pages 211-227, February.
    10. Cui, Lianbiao & Yue, Suyun & Nghiem, Xuan-Hoa & Duan, Mei, 2023. "Exploring the risk and economic vulnerability of global energy supply chain interruption in the context of Russo-Ukrainian war," Resources Policy, Elsevier, vol. 81(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    2. Simplice A. Asongu & Nicholas M. Odhiambo, 2023. "The role of financial inclusion in moderating the incidence of entrepreneurship on energy poverty in Ghana," Working Papers of the African Governance and Development Institute. 23/035, African Governance and Development Institute..
    3. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    4. Ullah, Sana & Gozgor, Giray & Lu, Zhou, 2024. "How do conflicts affect energy security risk? Evidence from major energy-consuming economies," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 175-187.
    5. Abbas, Khizar & Li, Shixiang & Xu, Deyi & Baz, Khan & Rakhmetova, Aigerim, 2020. "Do socioeconomic factors determine household multidimensional energy poverty? Empirical evidence from South Asia," Energy Policy, Elsevier, vol. 146(C).
    6. Gao, Yuan & Yu, Lu, 2024. "Understanding the impacts of ecological compensation policies on energy poverty: insights from forest communities in Zhejiang, China," Land Use Policy, Elsevier, vol. 142(C).
    7. Simplice A. Asongu & Amarachi O. Ogbonna & Mariette C. N. Mete, 2024. "Marriage as an argument for energy poverty reduction: the moderating role of financial inclusion," Working Papers of the African Governance and Development Institute. 24/031, African Governance and Development Institute..
    8. Muhammad Sharif & Farzana Naheed Khan, 2023. "Unveiling the Implications of Energy Poverty for Educational Attainments in Pakistan: A Multidimensional Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 472-483, September.
    9. Sen, Kanchan Kumar & Karmaker, Shamal Chandra & Hosan, Shahadat & Chapman, Andrew J. & Uddin, Md Kamal & Saha, Bidyut Baran, 2023. "Energy poverty alleviation through financial inclusion: Role of gender in Bangladesh," Energy, Elsevier, vol. 282(C).
    10. Muhammad Shafiullah & Zhilun Jiao & Muhammad Shahbaz & Kangyin Dong, 2023. "Examining energy poverty in Chinese households: An Engel curve approach," Australian Economic Papers, Wiley Blackwell, vol. 62(1), pages 149-184, March.
    11. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud & Hosseini Bamakan, Seyed Mojtaba, 2024. "Evaluating the blockchain technology strategies for reducing renewable energy development risks using a novel integrated decision framework," Energy, Elsevier, vol. 289(C).
    12. Bukari, Chei & Broermann, Shanaz & Okai, Davidson, 2021. "Energy poverty and health expenditure: Evidence from Ghana," Energy Economics, Elsevier, vol. 103(C).
    13. Ben Cheikh, Nidhaleddine & Ben Zaied, Younes & Nguyen, Duc Khuong, 2023. "Understanding energy poverty drivers in Europe," Energy Policy, Elsevier, vol. 183(C).
    14. Xueyang Zhang & Shengjun Huang & Qingxia Li & Rui Wang & Tao Zhang & Bo Guo, 2024. "Nodal Invulnerability Recovery Considering Power Generation Balance: A Bi-Objective Robust Optimization Framework," Mathematics, MDPI, vol. 12(12), pages 1-19, June.
    15. Khan, Yasir & Hassan, Taimoor & Guiqin, Huang & Nabi, Ghulam, 2023. "Analyzing the impact of natural resources and rule of law on sustainable environment: A proposed policy framework for BRICS economies," Resources Policy, Elsevier, vol. 86(PA).
    16. Lin, Boqiang & Okyere, Michael Adu, 2023. "Race and energy poverty: The moderating role of subsidies in South Africa," Energy Economics, Elsevier, vol. 117(C).
    17. Khan, Zeeshan & Haouas, Ilham & Trinh, Hai Hong & Badeeb, Ramez Abubakr & Zhang, Changyong, 2023. "Financial inclusion and energy poverty nexus in the era of globalization: Role of composite risk index and energy investment in emerging economies," Renewable Energy, Elsevier, vol. 204(C), pages 382-399.
    18. Laldjebaev, Murodbek & Hussain, Azmat, 2021. "Significance of context, metrics and datasets in assessment of multidimensional energy poverty: A case study of Tajikistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Yun, Na, 2023. "Nexus among carbon intensity and natural resources utilization on economic development: Econometric analysis from China," Resources Policy, Elsevier, vol. 83(C).
    20. Qin, Jiangnan & Li, Wenjing & Zhang, Junbiao, 2024. "How can energy poverty affect farmers’ health? Evidence from mountainous areas in China," Energy, Elsevier, vol. 290(C).

    More about this item

    Keywords

    Clean energy; renewable energy; risk evaluation; telecommunications sector; TOP-DEMATEL;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arv:journl:v:1:y:2023:i:1:p:13-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shahriyar Mukhtarov (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.