IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1453-d1390602.html
   My bibliography  Save this article

Computation of the Mann–Whitney Effect under Parametric Survival Copula Models

Author

Listed:
  • Kosuke Nakazono

    (Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
    Department of Industrial Engineering and Economics, Tokyo Institute of Technology, Tokyo 152-8552, Japan)

  • Yu-Cheng Lin

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan)

  • Gen-Yih Liao

    (Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan)

  • Ryuji Uozumi

    (Department of Industrial Engineering and Economics, Tokyo Institute of Technology, Tokyo 152-8552, Japan)

  • Takeshi Emura

    (Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
    Biostatistics Center, Kurume University, Kurume 830-0011, Japan)

Abstract

The Mann–Whitney effect is a measure for comparing survival distributions between two groups. The Mann–Whitney effect is interpreted as the probability that a randomly selected subject in a group survives longer than a randomly selected subject in the other group. Under the independence assumption of two groups, the Mann–Whitney effect can be expressed as the traditional integral formula of survival functions. However, when the survival times in two groups are not independent of each other, the traditional formula of the Mann–Whitney effect has to be modified. In this article, we propose a copula-based approach to compute the Mann–Whitney effect with parametric survival models under dependence of two groups, which may arise in the potential outcome framework. In addition, we develop a Shiny web app that can implement the proposed method via simple commands. Through a simulation study, we show the correctness of the proposed calculator. We apply the proposed methods to two real datasets.

Suggested Citation

  • Kosuke Nakazono & Yu-Cheng Lin & Gen-Yih Liao & Ryuji Uozumi & Takeshi Emura, 2024. "Computation of the Mann–Whitney Effect under Parametric Survival Copula Models," Mathematics, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1453-:d:1390602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    2. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
    3. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Dongdong Li & X. Joan Hu & Rui Wang, 2023. "Evaluating Association Between Two Event Times with Observations Subject to Informative Censoring," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1282-1294, April.
    5. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
    6. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    7. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nanami Taketomi & Kazuki Yamamoto & Christophe Chesneau & Takeshi Emura, 2022. "Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    2. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    3. Emura, Takeshi & Lai, Ching-Chieh & Sun, Li-Hsien, 2023. "Change point estimation under a copula-based Markov chain model for binomial time series," Econometrics and Statistics, Elsevier, vol. 28(C), pages 120-137.
    4. Khreshna Syuhada & Arief Hakim, 2020. "Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurrencies," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-34, December.
    5. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    6. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    7. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    8. Ning, Cathy & Wirjanto, Tony S., 2009. "Extreme return-volume dependence in East-Asian stock markets: A copula approach," Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.
    9. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    10. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    11. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    12. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    13. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    14. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    15. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    16. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2022. "Spillovers and diversification benefits between oil futures and ASEAN stock markets," Resources Policy, Elsevier, vol. 79(C).
    17. Jian Li & Jean‐Paul Chavas, 2023. "A dynamic analysis of the distribution of commodity futures and spot prices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 122-143, January.
    18. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    19. Luo, Weiwei & Brooks, Robert D. & Silvapulle, Param, 2011. "Effects of the open policy on the dependence between the Chinese 'A' stock market and other equity markets: An industry sector perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 49-74, February.
    20. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1453-:d:1390602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.