IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1151-d384168.html
   My bibliography  Save this article

Second Order Expansions for High-Dimension Low-Sample-Size Data Statistics in Random Setting

Author

Listed:
  • Gerd Christoph

    (Department of Mathematics, Otto-von-Guericke University Magdeburg, 39016 Magdeburg, Germany
    Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia
    These authors contributed equally to this work.)

  • Vladimir V. Ulyanov

    (Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia
    Faculty of Computer Science, National Research University Higher School of Economics, 167005 Moscow, Russia
    These authors contributed equally to this work.)

Abstract

We consider high-dimension low-sample-size data taken from the standard multivariate normal distribution under assumption that dimension is a random variable. The second order Chebyshev–Edgeworth expansions for distributions of an angle between two sample observations and corresponding sample correlation coefficient are constructed with error bounds. Depending on the type of normalization, we get three different limit distributions: Normal, Student’s t -, or Laplace distributions. The paper continues studies of the authors on approximation of statistics for random size samples.

Suggested Citation

  • Gerd Christoph & Vladimir V. Ulyanov, 2020. "Second Order Expansions for High-Dimension Low-Sample-Size Data Statistics in Random Setting," Mathematics, MDPI, vol. 8(7), pages 1-28, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1151-:d:384168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jazaa S. Al-Mutairi & Mohammad Z. Raqab, 2020. "Confidence intervals for quantiles based on samples of random sizes," Statistical Papers, Springer, vol. 61(1), pages 261-277, February.
    2. Peter Hall & J. S. Marron & Amnon Neeman, 2005. "Geometric representation of high dimension, low sample size data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 427-444, June.
    3. Goldfeld, Stephen M. & Quandt, Richard E., 1981. "Econometric modelling with non-normal disturbances," Journal of Econometrics, Elsevier, vol. 17(2), pages 141-155, November.
    4. H. M. Barakat & E. M. Nigm & Magdy E. El-Adll & M. Yusuf, 2018. "Prediction of future generalized order statistics based on exponential distribution with random sample size," Statistical Papers, Springer, vol. 59(2), pages 605-631, June.
    5. Christian Schluter & Mark Trede, 2016. "Weak convergence to the Student and Laplace distributions," Post-Print hal-01447853, HAL.
    6. Konishi, Sadanori, 1979. "Asymptotic expansions for the distributions of functions of a correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 259-266, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerd Christoph & Vladimir V. Ulyanov, 2021. "Chebyshev–Edgeworth-Type Approximations for Statistics Based on Samples with Random Sizes," Mathematics, MDPI, vol. 9(7), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerd Christoph & Vladimir V. Ulyanov, 2021. "Chebyshev–Edgeworth-Type Approximations for Statistics Based on Samples with Random Sizes," Mathematics, MDPI, vol. 9(7), pages 1-28, April.
    2. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    3. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    5. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    6. Kazuyoshi Yata & Makoto Aoshima, 2012. "Inference on High-Dimensional Mean Vectors with Fewer Observations Than the Dimension," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 459-476, September.
    7. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    8. Gabriela Oliveira & Wagner Barreto-Souza & Roger W. C. Silva, 2021. "Convergence and inference for mixed Poisson random sums," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 751-777, July.
    9. Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.
    10. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    12. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    13. Matthieu Stigler & Apratim Dey & Andrew Hobbs & David Lobell, 2022. "With big data come big problems: pitfalls in measuring basis risk for crop index insurance," Papers 2209.14611, arXiv.org.
    14. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    15. Shin-ichi Tsukada, 2019. "High dimensional two-sample test based on the inter-point distance," Computational Statistics, Springer, vol. 34(2), pages 599-615, June.
    16. Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    17. Arturo Ramos & Till Massing & Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno, 2023. "Composite distributions in the social sciences: A comparative empirical study of firms' sales distribution for France, Germany, Italy, Japan, South Korea, and Spain," Papers 2301.09438, arXiv.org.
    18. Saadati Nik, A. & Asgharzadeh, A. & Raqab, Mohammad Z., 2021. "Estimation and prediction for a new Pareto-type distribution under progressive type-II censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 508-530.
    19. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    20. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1151-:d:384168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.