IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.09438.html
   My bibliography  Save this paper

Composite distributions in the social sciences: A comparative empirical study of firms' sales distribution for France, Germany, Italy, Japan, South Korea, and Spain

Author

Listed:
  • Arturo Ramos
  • Till Massing
  • Atushi Ishikawa
  • Shouji Fujimoto
  • Takayuki Mizuno

Abstract

We study 17 different statistical distributions for sizes obtained {}from the classical and recent literature to describe a relevant variable in the social sciences and Economics, namely the firms' sales distribution in six countries over an ample period. We find that the best results are obtained with mixtures of lognormal (LN), loglogistic (LL), and log Student's $t$ (LSt) distributions. The single lognormal, in turn, is strongly not selected. We then find that the whole firm size distribution is better described by a mixture, and there exist subgroups of firms. Depending on the method of measurement, the best fitting distribution cannot be defined by a single one, but as a mixture of at least three distributions or even four or five. We assess a full sample analysis, an in-sample and out-of-sample analysis, and a doubly truncated sample analysis. We also provide the formulation of the preferred models as solutions of the Fokker--Planck or forward Kolmogorov equation.

Suggested Citation

  • Arturo Ramos & Till Massing & Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno, 2023. "Composite distributions in the social sciences: A comparative empirical study of firms' sales distribution for France, Germany, Italy, Japan, South Korea, and Spain," Papers 2301.09438, arXiv.org.
  • Handle: RePEc:arx:papers:2301.09438
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.09438
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reginster, Alexandre, 2021. "A stochastic analysis of firm dynamics: Their impact on the firm size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Christian Schluter & Mark Trede, 2019. "Size distributions reconsidered," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 695-710, July.
    3. di Giovanni, Julian & Levchenko, Andrei A. & Rancière, Romain, 2011. "Power laws in firm size and openness to trade: Measurement and implications," Journal of International Economics, Elsevier, vol. 85(1), pages 42-52, September.
    4. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    5. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    6. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    7. Parr, John B., 1985. "A note on the size distribution of cities over time," Journal of Urban Economics, Elsevier, vol. 18(2), pages 199-212, September.
    8. Kwong, Hok Shing & Nadarajah, Saralees, 2019. "A note on “Pareto tails and lognormal body of US cities size distribution”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 55-62.
    9. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2017. "Where Gibrat meets Zipf: Scale and scope of French firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 265-275.
    10. Luís M B Cabral & José Mata, 2003. "On the Evolution of the Firm Size Distribution: Facts and Theory," American Economic Review, American Economic Association, vol. 93(4), pages 1075-1090, September.
    11. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    12. Giesen, Kristian & Zimmermann, Arndt & Suedekum, Jens, 2010. "The size distribution across all cities - Double Pareto lognormal strikes," Journal of Urban Economics, Elsevier, vol. 68(2), pages 129-137, September.
    13. Otunuga, Olusegun Michael, 2021. "Time-dependent probability density function for general stochastic logistic population model with harvesting effort," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    14. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    15. William J. Reed, 2002. "On the Rank‐Size Distribution for Human Settlements," Journal of Regional Science, Wiley Blackwell, vol. 42(1), pages 1-17, February.
    16. Christian Schluter & Mark Trede, 2016. "Weak convergence to the Student and Laplace distributions," Post-Print hal-01447853, HAL.
    17. B. D. McCullough & H. D. Vinod, 2003. "Verifying the Solution from a Nonlinear Solver: A Case Study," American Economic Review, American Economic Association, vol. 93(3), pages 873-892, June.
    18. Campolieti, Michele & Ramos, Arturo, 2021. "The distribution of strike size: Empirical evidence from Europe and North America in the 19th and 20th centuries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    19. Anna Maria Fiori, 2020. "On firm size distribution: statistical models, mechanisms, and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 447-482, September.
    20. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2017. "Measuring firm size distribution with semi-nonparametric densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 35-47.
    21. Arturo Ramos, 2017. "Are the log-growth rates of city sizes distributed normally? Empirical evidence for the USA," Empirical Economics, Springer, vol. 53(3), pages 1109-1123, November.
    22. K. E. Basford & G. J. McLachlan, 1985. "Likelihood Estimation with Normal Mixture Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 282-289, November.
    23. Toda, Alexis Akira, 2017. "A Note On The Size Distribution Of Consumption: More Double Pareto Than Lognormal," Macroeconomic Dynamics, Cambridge University Press, vol. 21(6), pages 1508-1518, September.
    24. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    25. Reed, William J., 2001. "The Pareto, Zipf and other power laws," Economics Letters, Elsevier, vol. 74(1), pages 15-19, December.
    26. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    27. Miguel Puente-Ajovín & Arturo Ramos & Fernando Sanz-Gracia, 2020. "Is there a universal parametric city size distribution? Empirical evidence for 70 countries," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 65(3), pages 727-741, December.
    28. Massing, Till & Ramos, Arturo, 2021. "Student’s t mixture models for stock indices. A comparative study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    29. Marco Bee & Massimo Riccaboni & Stefano Schiavo, 2011. "Pareto versus lognormal: a maximum entropy test," Department of Economics Working Papers 1102, Department of Economics, University of Trento, Italia.
    30. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 739-767.
    31. Guo, Jinzhong & Xu, Qi & Chen, Qinghua & Wang, Yougui, 2013. "Firm size distribution and mobility of the top 500 firms in China, the United States and the world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2903-2914.
    32. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2013. "The size distribution of US cities: Not Pareto, even in the tail," Economics Letters, Elsevier, vol. 120(2), pages 232-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    2. Arturo, Ramos, 2019. "Have the log-population processes stationary and independent increments? Empirical evidence for Italy, Spain and the USA along more than a century," MPRA Paper 93562, University Library of Munich, Germany.
    3. Ruben Dewitte & Michel Dumont & Glenn Rayp & Peter Willemé, 2022. "Unobserved heterogeneity in the productivity distribution and gains from trade," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1566-1597, August.
    4. Peña, Guillermo & Puente-Ajovín, Miguel & Ramos, Arturo & Sanz-Gracia, Fernando, 2022. "Log-growth rates of CO2: An empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    5. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    6. Giorgio Fazio & Marco Modica, 2015. "Pareto Or Log-Normal? Best Fit And Truncation In The Distribution Of All Cities," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 736-756, November.
    7. Jakub Growiec & Fabio Pammolli & Massimo Riccaboni, 2020. "Innovation and Corporate Dynamics: A Theoretical Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(1), pages 1-45, March.
    8. Rafael González-Val, 2019. "US city-size distribution and space," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(3), pages 283-300, July.
    9. Behzod B. Ahundjanov & Sherzod B. Akhundjanov & Botir B. Okhunjanov, 2022. "Power law in COVID‐19 cases in China," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 699-719, April.
    10. Christian Schluter & Mark Trede, 2019. "Size distributions reconsidered," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 695-710, July.
    11. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    12. Arturo Ramos, 2017. "Are the log-growth rates of city sizes distributed normally? Empirical evidence for the USA," Empirical Economics, Springer, vol. 53(3), pages 1109-1123, November.
    13. Tomaschitz, Roman, 2020. "Multiply broken power-law densities as survival functions: An alternative to Pareto and lognormal fits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    14. Beare, Brendan K & Toda, Alexis Akira, 2020. "On the emergence of a power law in the distribution of COVID-19 cases," University of California at San Diego, Economics Working Paper Series qt9k5027d0, Department of Economics, UC San Diego.
    15. Toda, Alexis Akira, 2017. "A Note On The Size Distribution Of Consumption: More Double Pareto Than Lognormal," Macroeconomic Dynamics, Cambridge University Press, vol. 21(6), pages 1508-1518, September.
    16. Malevergne, Y. & Saichev, A. & Sornette, D., 2013. "Zipf's law and maximum sustainable growth," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1195-1212.
    17. Giesen, Kristian & Suedekum, Jens, 2014. "City age and city size," European Economic Review, Elsevier, vol. 71(C), pages 193-208.
    18. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    19. Akhundjanov, Sherzod B. & Devadoss, Stephen & Luckstead, Jeff, 2017. "Size distribution of national CO2 emissions," Energy Economics, Elsevier, vol. 66(C), pages 182-193.
    20. Alexis Akira Toda & Yulong Wang, 2021. "Efficient minimum distance estimation of Pareto exponent from top income shares," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 228-243, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.09438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.