IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01447853.html
   My bibliography  Save this paper

Weak convergence to the Student and Laplace distributions

Author

Listed:
  • Christian Schluter

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Mark Trede

    (Department of Economics - WWU - Westfälische Wilhelms-Universität Münster = University of Münster)

Abstract

One often observed empirical regularity is a power-law behavior of the tails of some distribution of interest. We propose a limit law for normalized random means that exhibits such heavy tails irrespective of the distribution of the underlying sampling units: the limit is a t-distribution if the random variables have finite variances. The generative scheme is then extended to encompass classic limit theorems for random sums. The resulting unifying framework has wide empirical applicability which we illustrate by considering two empirical regularities in two different fields. First, we turn to urban geography and explain why city-size growth rates are approximately t-distributed, using a model of random sector growth based on the central place theory. Second, turning to an issue in finance, we show that high-frequency stock index returns can be modeled as a generalized asymmetric Laplace process. These empirical illustrations elucidate the situations in which heavy tails can arise.

Suggested Citation

  • Christian Schluter & Mark Trede, 2016. "Weak convergence to the Student and Laplace distributions," Post-Print hal-01447853, HAL.
  • Handle: RePEc:hal:journl:hal-01447853
    DOI: 10.1017/jpr.2015.13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Schluter & Mark Trede, 2019. "Size distributions reconsidered," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 695-710, July.
    2. Andreas Masuhr, 2017. "Volatility Transmission in Overlapping Trading Zones," CQE Working Papers 6717, Center for Quantitative Economics (CQE), University of Muenster.
    3. Gabriela Oliveira & Wagner Barreto-Souza & Roger W. C. Silva, 2021. "Convergence and inference for mixed Poisson random sums," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 751-777, July.
    4. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Gerd Christoph & Vladimir V. Ulyanov, 2023. "Second Order Chebyshev–Edgeworth-Type Approximations for Statistics Based on Random Size Samples," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    6. Arturo Ramos & Till Massing & Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno, 2023. "Composite distributions in the social sciences: A comparative empirical study of firms' sales distribution for France, Germany, Italy, Japan, South Korea, and Spain," Papers 2301.09438, arXiv.org.
    7. Băncescu, Irina & Chivu, Luminiţa & Massing, Till & Preda, Vasile & Puente-Ajovín, Miguel & Ramos, Arturo, 2024. "On the parametric description of log-growth rates of Romanian city sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    8. Korolev, Victor & Zeifman, Alexander, 2021. "Bounds for convergence rate in laws of large numbers for mixed Poisson random sums," Statistics & Probability Letters, Elsevier, vol. 168(C).
    9. Gerd Christoph & Vladimir V. Ulyanov, 2021. "Chebyshev–Edgeworth-Type Approximations for Statistics Based on Samples with Random Sizes," Mathematics, MDPI, vol. 9(7), pages 1-28, April.
    10. Luca Pratelli & Pietro Rigo, 2021. "Convergence in Total Variation of Random Sums," Mathematics, MDPI, vol. 9(2), pages 1-11, January.
    11. Gerd Christoph & Vladimir V. Ulyanov, 2020. "Second Order Expansions for High-Dimension Low-Sample-Size Data Statistics in Random Setting," Mathematics, MDPI, vol. 8(7), pages 1-28, July.

    More about this item

    Keywords

    Economie quantitative;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01447853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.