IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i10p2144-d172776.html
   My bibliography  Save this article

Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016

Author

Listed:
  • Amy R. Krystosik

    (Department of Pediatrics, Division of Infectious Disease, Stanford University, Grant Building, S 374, 300 Pasteur Drive, Stanford, CA 94305-5208, USA
    Department of Biostatistics, Environmental Health Sciences, and Epidemiology, College of Public Health, Kent State University, Kent, OH 44240, USA)

  • Andrew Curtis

    (Department of Geography, the GIS, Health & Hazards Lab, Kent State University, Kent, OH 44240, USA)

  • A. Desiree LaBeaud

    (Department of Pediatrics, Division of Infectious Disease, Stanford University, Grant Building, S 374, 300 Pasteur Drive, Stanford, CA 94305-5208, USA)

  • Diana M. Dávalos

    (Department of Public Health and Community Medicine, Universidad Icesi, Cali 760031, Colombia)

  • Robinson Pacheco

    (Department of Public Health and Community Medicine, Universidad Icesi, Cali 760031, Colombia
    Grupo de Investigación en Epidemiología y Servicios, Universidad Libre, Cali 760031, Colombia)

  • Paola Buritica

    (Grupo de Investigación en Epidemiología y Servicios, Universidad Libre, Cali 760031, Colombia)

  • Álvaro A. Álvarez

    (Caucaseco Scientific Research Center, Cali 760031, Colombia
    Stanford University School of Medicine Research IRT, 3172 Porter Drive, Stanford, CA 94305-5208, USA)

  • Madhav P. Bhatta

    (Department of Biostatistics, Environmental Health Sciences, and Epidemiology, College of Public Health, Kent State University, Kent, OH 44240, USA)

  • Jorge Humberto Rojas Palacios

    (Secretaría de Salud de Cali, Colombia, Cali 760031, Colombia)

  • Mark A. James

    (Department of Biostatistics, Environmental Health Sciences, and Epidemiology, College of Public Health, Kent State University, Kent, OH 44240, USA)

Abstract

Arboviruses are responsible for a large burden of disease globally and are thus subject to intense epidemiological scrutiny. However, a variable notably absent from most epidemiological analyses has been the impact of violence on arboviral transmission and surveillance. Violence impedes surveillance and delivery of health and preventative services and affects an individual’s health-related behaviors when survival takes priority. Moreover, low and middle-income countries bear a disproportionately high burden of violence and related health outcomes, including vector borne diseases. To better understand the epidemiology of arboviral outbreaks in Cali, Colombia, we georeferenced chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viral cases from The National System of Surveillance in Public Health between October 2014 and April 2016. We extracted homicide data from the municipal monthly reports and kernel density of homicide distribution from IdeasPaz. Crucially, an overall higher risk of homicide is associated with increased risk of reported DENV, lower rates of acute testing, and higher rates of lab versus clinical discordance. In the context of high violence as a potential barrier to access to preventive health services, a community approach to improve health and peace should be considered.

Suggested Citation

  • Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2144-:d:172776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/10/2144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/10/2144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Gary Slutkin, 2017. "Reducing violence as the next great public health achievement," Nature Human Behaviour, Nature, vol. 1(1), pages 1-1, January.
    3. Rachel Lowe & Christovam Barcellos & Patrícia Brasil & Oswaldo G. Cruz & Nildimar Alves Honório & Hannah Kuper & Marilia Sá Carvalho, 2018. "The Zika Virus Epidemic in Brazil: From Discovery to Future Implications," IJERPH, MDPI, vol. 15(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eloise B. Skinner & Caroline K. Glidden & Andrew J. MacDonald & Erin A. Mordecai, 2023. "Human footprint is associated with shifts in the assemblages of major vector-borne diseases," Nature Sustainability, Nature, vol. 6(6), pages 652-661, June.
    2. Jefferson Pereira Caldas Santos & Nildimar Alves Honório & Christovam Barcellos & Aline Araújo Nobre, 2020. "A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
    3. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    4. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    6. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    7. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    8. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    9. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    10. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    11. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    12. Emma Taylor-Salmon & Verity Hill & Lauren M. Paul & Robert T. Koch & Mallery I. Breban & Chrispin Chaguza & Afeez Sodeinde & Joshua L. Warren & Sylvia Bunch & Natalia Cano & Marshall Cone & Sarah Eyso, 2024. "Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    14. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    15. Amanda C. Walsh, 2019. "Impacts of Dengue Epidemics on Household Labor Market Outcomes," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 684-702, December.
    16. Beibei Li & Ruonan Ma & Lei Chen & Caiyu Zhou & Yu-Xiao Zhang & Xiaonan Wang & Helai Huang & Qikun Hu & Xiaobo Zheng & Jiarui Yang & Mengjuan Shao & Pengfei Hao & Yanfen Wu & Yizhen Che & Chang Li & T, 2023. "Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    18. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    19. Sumaira Zafar & Oleg Shipin & Richard E. Paul & Joacim Rocklöv & Ubydul Haque & Md. Siddikur Rahman & Mayfong Mayxay & Chamsai Pientong & Sirinart Aromseree & Petchaboon Poolphol & Tiengkham Pongvongs, 2021. "Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand," IJERPH, MDPI, vol. 18(17), pages 1-25, September.
    20. Nicholas J Martin & Philip A Smith & Nicole L Achee & Gerald T DeLong, 2013. "Determining Airborne Concentrations of Spatial Repellent Chemicals in Mosquito Behavior Assay Systems," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-7, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2144-:d:172776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.