IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1438-d1098963.html
   My bibliography  Save this article

A Moth–Flame Optimized Echo State Network and Triplet Feature Extractor for Epilepsy Electro-Encephalography Signals

Author

Listed:
  • Xue-song Tang

    (Faculty of Information Science, Donghua University, Shanghai 201620, China)

  • Luchao Jiang

    (Faculty of Information Science, Donghua University, Shanghai 201620, China)

  • Kuangrong Hao

    (Faculty of Information Science, Donghua University, Shanghai 201620, China)

  • Tong Wang

    (Faculty of Information Science, Donghua University, Shanghai 201620, China)

  • Xiaoyan Liu

    (Faculty of Information Science, Donghua University, Shanghai 201620, China)

Abstract

The analysis of epilepsy electro-encephalography (EEG) signals is of great significance for the diagnosis of epilepsy, which is one of the common neurological diseases of all age groups. With the developments of machine learning, many data-driven models have achieved great performance in EEG signals classification. However, it is difficult to select appropriate hyperparameters for the models to file a specific task. In this paper, an evolutionary algorithm enhanced model is proposed, which optimizes the fixed weights of the reservoir layer of the echo state network (ESN) according to the specific task. As evaluating a feature extractor relies heavily on the classifiers, a new feature distribution evaluation function (FDEF) using the label information of EEG signals is defined as the fitness function, which is an objective way to evaluate the performance of a feature extractor that not only focuses on the degree of dispersion, but also considers the relation amongst triplets. The performance of the proposed method is verified on the Bonn University dataset with an accuracy of 98.16% and on the CHB-MIT dataset with the highest sensitivity of 96.14%. The proposed method outperforms the previous EEG methods, as it can automatically optimize the hyperparameters of ESN to adjust the structure and initial parameters for a specific classification task. Furthermore, the optimization direction by using FDEF as the fitness of MFO no longer relies on the performance of the classifier but on the relative separability amongst classes.

Suggested Citation

  • Xue-song Tang & Luchao Jiang & Kuangrong Hao & Tong Wang & Xiaoyan Liu, 2023. "A Moth–Flame Optimized Echo State Network and Triplet Feature Extractor for Epilepsy Electro-Encephalography Signals," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1438-:d:1098963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    2. Duo Chen & Suiren Wan & Jing Xiang & Forrest Sheng Bao, 2017. "A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    3. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    2. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    5. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    7. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    8. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    9. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    10. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Yu Gong & Xiaojiang Xu & Changping Zhao & Tobias Schoenherr, 2024. "Multi-Tier Supply Chain Learning Networks: A Simulation Study Based on the Experience-Weighted Attraction (EWA) Model," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    12. Divakaruni, Anantha & Zimmerman, Peter, 2023. "The Lightning Network: Turning Bitcoin into money," Finance Research Letters, Elsevier, vol. 52(C).
    13. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Chen, Feng & Wu, Bin & Lou, Wen-qian & Zhu, Bo-wen, 2024. "Impact of dual-credit policy on diffusion of technology R & D among automakers: Based on an evolutionary game model with technology-spillover in complex network," Energy, Elsevier, vol. 303(C).
    15. Xiaodi Ni & Lijun Yang, 2024. "Mapping Salience and Trajectory: On How to Situate Literary Translators in Publishing Legends of the Condor Heroes With Visualization," SAGE Open, , vol. 14(2), pages 21582440241, May.
    16. Abderrahim Zannou & Abdelhak Boulaalam & El Habib Nfaoui, 2020. "SIoT: A New Strategy to Improve the Network Lifetime with an Efficient Search Process," Future Internet, MDPI, vol. 13(1), pages 1-23, December.
    17. Jingsha He & Yue Li & Nafei Zhu, 2023. "A Game Theory-Based Model for the Dissemination of Privacy Information in Online Social Networks," Future Internet, MDPI, vol. 15(3), pages 1-17, February.
    18. Jianning Su & Julian Allagan & Shanzhen Gao & Olumide Malomo & Weizheng Gao & Ephrem Eyob, 2024. "Dominion on Grids," Mathematics, MDPI, vol. 12(21), pages 1-13, October.
    19. Qian, Qian & Feng, Hairong & Gu, Jing, 2021. "The influence of risk attitude on credit risk contagion—Perspective of information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    20. Fangyuan Tian & Hongxia Li & Shuicheng Tian & Chenning Tian & Jiang Shao, 2022. "Is There a Difference in Brain Functional Connectivity between Chinese Coal Mine Workers Who Have Engaged in Unsafe Behavior and Those Who Have Not?," IJERPH, MDPI, vol. 19(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1438-:d:1098963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.