IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0173138.html
   My bibliography  Save this article

A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG

Author

Listed:
  • Duo Chen
  • Suiren Wan
  • Jing Xiang
  • Forrest Sheng Bao

Abstract

In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets.

Suggested Citation

  • Duo Chen & Suiren Wan & Jing Xiang & Forrest Sheng Bao, 2017. "A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0173138
    DOI: 10.1371/journal.pone.0173138
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173138
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0173138&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0173138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolei Zhang & Weijun Pan, 2019. "Exon prediction based on multiscale products of a genomic-inspired multiscale bilateral filtering," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    2. Xue-song Tang & Luchao Jiang & Kuangrong Hao & Tong Wang & Xiaoyan Liu, 2023. "A Moth–Flame Optimized Echo State Network and Triplet Feature Extractor for Epilepsy Electro-Encephalography Signals," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    3. Xinzhong Zhu & Huiying Xu & Jianmin Zhao & Jie Tian, 2017. "Automated Epileptic Seizure Detection in Scalp EEG Based on Spatial-Temporal Complexity," Complexity, Hindawi, vol. 2017, pages 1-8, December.
    4. Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Ahmad al-Qerem & Faten Kharbat & Shadi Nashwan & Staish Ashraf & khairi blaou, 2020. "General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0173138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.