IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p958-d1067041.html
   My bibliography  Save this article

Modified Analytical Technique for Multi-Objective Optimal Placement of High-Level Renewable Energy Penetration Connected to Egyptian Power System

Author

Listed:
  • Mahmoud Aref

    (Ural Power Engineering Institute, Ural Federal University Yekaterinburg, 620002 Yekaterinburg, Russia
    Electrical Engineering Department, Assiut University, Assiut 71515, Egypt)

  • Vladislav Oboskalov

    (Ural Power Engineering Institute, Ural Federal University Yekaterinburg, 620002 Yekaterinburg, Russia)

  • Adel El-Shahat

    (Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA)

  • Almoataz Y. Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

Abstract

The 2022 United Nations Climate Change Conference (COP27) recommended that Egypt be converted to green energy, in addition to increasing the demand for annual energy consumption, which will lead to an increase in the use of renewable energy sources (RES) in Egypt. The Egyptian Ministry of Energy and Electricity plans to build RES (photovoltaic systems and wind farms) connected to the Egyptian power system (EPS). It is a defect to choose the position and size of the RES based on only power calculations because the RES is an intermittent source. This paper presents a modified analytical energy technique for locating RES in IEEE 33-bus and 69-bus distribution networks and a realistic 25-bus 500 kV EPS. An analytical multi-objective function has been developed to determine the optimal locations of DGs or RESs based on power losses and annual energy loss calculations of the system depending on weather conditions. The efficiency and feasibility of the proposed algorithm based on the IEEE 33-bus and 69-bus distribution networks and the realistic 25-bus 500 kV EPS have been tested and compared with PSO and GA. The impact of RESs on the performance of the 25-bus 500 kV EPS has been investigated based on annual energy losses and operation stability depending on weather conditions. The results showed that the proposed technique used these effective values to obtain optimal weather-adjusted locations. The optimal locations of PV systems or wind systems based on energy calculation improved the voltage profile better than power calculation by about 2%, and the annual energy losses decreased by about 7%. The performance of the 25-bus 500 kV EPS, due to the addition of RES, resulted in a decrease in the annual energy losses of 47% and an improvement in the voltage profile and system stability.

Suggested Citation

  • Mahmoud Aref & Vladislav Oboskalov & Adel El-Shahat & Almoataz Y. Abdelaziz, 2023. "Modified Analytical Technique for Multi-Objective Optimal Placement of High-Level Renewable Energy Penetration Connected to Egyptian Power System," Mathematics, MDPI, vol. 11(4), pages 1-31, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:958-:d:1067041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prem Prakash & Duli Chand Meena & Hasmat Malik & Majed A. Alotaibi & Irfan Ahmad Khan, 2022. "A Novel Analytical Approach for Optimal Integration of Renewable Energy Sources in Distribution Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    2. Minh Quan Duong & Thai Dinh Pham & Thang Trung Nguyen & Anh Tuan Doan & Hai Van Tran, 2019. "Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems," Energies, MDPI, vol. 12(1), pages 1-24, January.
    3. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    4. Sasan Azad & Mohammad Mehdi Amiri & Morteza Nazari Heris & Ali Mosallanejad & Mohammad Taghi Ameli, 2021. "A Novel Analytical Approach for Optimal Placement and Sizing of Distributed Generations in Radial Electrical Energy Distribution Systems," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    5. Syed Ali Abbas Kazmi & Dong Ryeol Shin, 2017. "DG Placement in Loop Distribution Network with New Voltage Stability Index and Loss Minimization Condition Based Planning Approach under Load Growth," Energies, MDPI, vol. 10(8), pages 1-28, August.
    6. Pramod Kumar & Nagendra Kumar Swarnkar & Ahmed Ali & Om Prakash Mahela & Baseem Khan & Divya Anand & Julien Brito Ballester, 2023. "Transmission Network Loss Reduction and Voltage Profile Improvement Using Network Restructuring and Optimal DG Placement," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    7. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idris H. Smaili & Dhaifallah R. Almalawi & Abdullah M. Shaheen & Hany S. E. Mansour, 2024. "Optimizing PV Sources and Shunt Capacitors for Energy Efficiency Improvement in Distribution Systems Using Subtraction-Average Algorithm," Mathematics, MDPI, vol. 12(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gubbala Venkata Naga Lakshmi & Askani Jaya Laxmi & Venkataramana Veeramsetty & Surender Reddy Salkuti, 2022. "Optimal Placement of Distributed Generation Based on Power Quality Improvement Using Self-Adaptive Lévy Flight Jaya Algorithm," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.
    2. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    3. Muhammad Huzaifa & Arif Hussain & Waseem Haider & Syed Ali Abbas Kazmi & Usman Ahmad & Habib Ur Rehman, 2023. "Optimal Planning Approaches under Various Seasonal Variations across an Active Distribution Grid Encapsulating Large-Scale Electrical Vehicle Fleets and Renewable Generation," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    4. Gonçalves Rigueira Pinheiro Castro, Pedro Henrique & Filho, Delly Oliveira & Rosa, André Pereira & Navas Gracia, Luis Manuel & Almeida Silva, Thais Cristina, 2024. "Comparison of externalities of biogas and photovoltaic solar energy for energy planning," Energy Policy, Elsevier, vol. 188(C).
    5. Mohamed Els. S. Abdelwareth & Dedet Candra Riawan & Chow Chompoo-inwai, 2023. "Optimum Generated Power for a Hybrid DG/PV/Battery Radial Network Using Meta-Heuristic Algorithms Based DG Allocation," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    6. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    7. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    8. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    9. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    10. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel-Angel Perea-Moreno & Alberto-Jesus Perea-Moreno, 2022. "Optimal Location and Sizing of PV Generation Units in Electrical Networks to Reduce the Total Annual Operating Costs: An Application of the Crow Search Algorithm," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    11. Mohammed Hamouda Ali & Ahmed Tijani Salawudeen & Salah Kamel & Habeeb Bello Salau & Monier Habil & Mokhtar Shouran, 2022. "Single- and Multi-Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network," Mathematics, MDPI, vol. 10(12), pages 1-39, June.
    12. Antonio Di Bari, 2020. "A Real Options Approach to Valuate Solar Energy Investment with Public Authority Incentives: The Italian Case," Energies, MDPI, vol. 13(16), pages 1-15, August.
    13. Oludamilare Bode Adewuyi & Komla A. Folly & David T. O. Oyedokun & Emmanuel Idowu Ogunwole, 2022. "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    14. Biggins, F.A.V. & Travers, D. & Ejeh, J.O. & Lee, R. & Buckley, A. & Brown, S., 2023. "The economic impact of location on a solar farm co-located with energy storage," Energy, Elsevier, vol. 278(C).
    15. Dinh Thanh Viet & Vo Van Phuong & Minh Quan Duong & Quoc Tuan Tran, 2020. "Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms," Energies, MDPI, vol. 13(11), pages 1-22, June.
    16. Al-Attar Ali Mohamed & Shimaa Ali & Salem Alkhalaf & Tomonobu Senjyu & Ashraf M. Hemeida, 2019. "Optimal Allocation of Hybrid Renewable Energy System by Multi-Objective Water Cycle Algorithm," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    17. Javier Carroquino & José-Luis Bernal-Agustín & Rodolfo Dufo-López, 2019. "Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    18. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    19. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    20. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:958-:d:1067041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.