IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4181-d398181.html
   My bibliography  Save this article

A Real Options Approach to Valuate Solar Energy Investment with Public Authority Incentives: The Italian Case

Author

Listed:
  • Antonio Di Bari

    (Department of Economics and Finance, University of Bari, Largo Abbazia S. Scolastica, 53-70124 Bari, Italy)

Abstract

Solar energy investment represents currently a valid reason to support sustainable economic development. In fact, over the last few years, governments have applied different measures to incentivize private consumers and firms to use renewable energies. Photovoltaic (PV) projects are characterized by uncertainty due to meteorological conditions, the unpredictable behavior of government, and managerial flexibility. Since the Net Present Value (NPV) approach is not able to capture these uncertain factors, it was replaced with the Real Options Approach (ROA). The latter method manages to embed flexibility in PV investment using binomial trees. This paper valuates PV investment in all regional areas in Italy using an integrated approach between the discounted cash flows method and real option value, called Expanded Net Present Value (ENPV). We fit the probability of tax benefits into a binomial lattice model after analyzing the geographical position and weather conditions of all regional capitals of Italy. The results show that the cities with high irradiance/temperature have positive NPV and high investment values. On the other hand, while most cities have negative NPV, the inclusion of the flexibility in investment decisions gives additional value to the project, making the ENPV positive and implying an attractive investment opportunity with the possibility of delaying the project. We also propose a sensitivity analysis that shows how the real option value changes when incentive policies of the government become more attractive. This paper contributes to the existing literature in the way of considering financial, meteorological/geographical, and political factors to valuate PV investment.

Suggested Citation

  • Antonio Di Bari, 2020. "A Real Options Approach to Valuate Solar Energy Investment with Public Authority Incentives: The Italian Case," Energies, MDPI, vol. 13(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4181-:d:398181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marek Durica & Danuse Guttenova & Ludovit Pinda & Lucia Svabova, 2018. "Sustainable Value of Investment in Real Estate: Real Options Approach," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    2. Madlener, Reinhard & Stoverink, Simon, 2012. "Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization," Applied Energy, Elsevier, vol. 97(C), pages 124-134.
    3. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    4. Fernandes, Bartolomeu & Cunha, Jorge & Ferreira, Paula, 2011. "The use of real options approach in energy sector investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4491-4497.
    5. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the pay-back period of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 122(C), pages 458-470.
    6. Lenos Trigeorgis, 1993. "Real Options and Interactions With Financial Flexibility," Financial Management, Financial Management Association, vol. 22(3), Fall.
    7. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    8. Ghazi, Sanaz & Ip, Kenneth, 2014. "The effect of weather conditions on the efficiency of PV panels in the southeast of UK," Renewable Energy, Elsevier, vol. 69(C), pages 50-59.
    9. Minh Quan Duong & Thai Dinh Pham & Thang Trung Nguyen & Anh Tuan Doan & Hai Van Tran, 2019. "Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems," Energies, MDPI, vol. 12(1), pages 1-24, January.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Panayi, Sylvia & Trigeorgis, Lenos, 1998. "Multi-stage Real Options: The Cases of Information Technology Infrastructure and International Bank Expansion," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 675-692.
    12. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    13. Castaneda, Monica & Zapata, Sebastian & Cherni, Judith & Aristizabal, Andres J. & Dyner, Isaac, 2020. "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renewable Energy, Elsevier, vol. 155(C), pages 1432-1443.
    14. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    15. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biancardi, Marta & Di Bari, Antonio & Villani, Giovanni, 2021. "R&D investment decision on smart cities: Energy sustainability and opportunity," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Or, Bartu & Bilgin, Gozde & Akcay, Emre Caner & Dikmen, Irem & Birgonul, M. Talat, 2024. "Real options valuation of photovoltaic investments: A case from Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Hasan Eroğlu, 2022. "Development of a novel solar energy need index for identifying priority investment regions: a case study and current status in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8840-8855, June.
    4. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    5. Houd Al-Obaidli & Rajesh Govindan & Tareq Al-Ansari, 2023. "Multidimensional Risk-Based Real Options Valuation for Low-Carbon Cogeneration Pathways," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biancardi, Marta & Di Bari, Antonio & Villani, Giovanni, 2021. "R&D investment decision on smart cities: Energy sustainability and opportunity," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    3. Barbara Glensk & Reinhard Madlener, 2019. "Energiewende @ Risk: On the Continuation of Renewable Power Generation at the End of Public Policy Support," Energies, MDPI, vol. 12(19), pages 1-25, September.
    4. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    7. Douglas A. Bodner & William B. Rouse, 2007. "Understanding R&D value creation with organizational simulation," Systems Engineering, John Wiley & Sons, vol. 10(1), pages 64-82, March.
    8. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    9. Jiangang Shi & Kaifeng Duan & Shiping Wen & Rui Zhang, 2019. "Investment Valuation Model of Public Rental Housing PPP Project for Private Sector: A Real Option Perspective," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    10. Nunes, Luis Eduardo & Lima, Marcus Vinicius Andrade de & Davison, Matthew & Leite, André Luis da Silva, 2021. "Switch and defer option in renewable energy projects: Evidences from Brazil," Energy, Elsevier, vol. 231(C).
    11. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    12. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    13. José Balibrea-Iniesta, 2020. "Economic Analysis of Renewable Energy Regulation in France: A Case Study for Photovoltaic Plants Based on Real Options," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Twine, Edgar E. & Kiiza, Barnabas & Bashaasha, Bernard, 2015. "The Flexible Accelerator Model of Investment: An Application to Ugandan Tea- Processing Firms," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 10(1), pages 1-15, March.
    15. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    16. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2015. "Corporate Social Responsibility: A Real Options Approach to the Challenge of Financial Sustainability," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-37, May.
    17. David Ford & Diane Lander & John Voyer, 2002. "A real options approach to valuing strategic flexibility in uncertain construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 20(4), pages 343-351.
    18. Duku-Kaakyire, Armstrong & Nanang, David M., 2004. "Application of real options theory to forestry investment analysis," Forest Policy and Economics, Elsevier, vol. 6(6), pages 539-552, October.
    19. Penizzotto, F. & Pringles, R. & Olsina, F., 2019. "Real options valuation of photovoltaic power investments in existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Jos Balibrea-Iniesta & Antonio S nchez-Soli o & Antonio Lara-Galera, 2015. "Application of Real Options Theory to the Assessment of Public Incentives for Onshore Wind Energy Development in Spain," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 791-800.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4181-:d:398181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.