IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309644.html
   My bibliography  Save this article

A novel finite difference-spectral method for fractal mobile/immobiletransport model based on Caputo–Fabrizio derivative

Author

Listed:
  • Fardi, Mojtaba
  • Khan, Yasir

Abstract

This paper proposes a finite difference-spectral method toa mobile/immobile fractal transport model formulated with the concept of a fractional derivative of Caputo–Fabrizio. A finite difference scheme is used in temporal space to achieve a semi-discrete configuration, whereas a Legendre-spectral approach proposes for spatial discretization. The error calculation of the new procedure is calculated based on the theoretical foundation of the current technique. Finally, a variety of numerical examples are presented to determine the feasibility and applicability of the suggested method in terms of convergence ratio and accuracy.

Suggested Citation

  • Fardi, Mojtaba & Khan, Yasir, 2021. "A novel finite difference-spectral method for fractal mobile/immobiletransport model based on Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309644
    DOI: 10.1016/j.chaos.2020.110573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Hijaz & Seadawy, Aly R. & Khan, Tufail A., 2020. "Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 13-23.
    2. Doungmo Goufo, Emile F. & Kumar, Sunil & Mugisha, S.B., 2020. "Similarities in a fifth-order evolution equation with and with no singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    4. Hijaz Ahmad & Tufail A. Khan & Predrag S. Stanimirović & Yu-Ming Chu & Imtiaz Ahmad, 2020. "Modified Variational Iteration Algorithm-II: Convergence and Applications to Diffusion Models," Complexity, Hindawi, vol. 2020, pages 1-14, October.
    5. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Lin & Sergiy Reutskiy & Yuhui Zhang & Yu Sun & Jun Lu, 2023. "The Novel Analytical–Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    2. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    2. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    3. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    7. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    8. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    9. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    10. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    11. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    12. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    13. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    14. Bonyah, Ebenezer & Gómez-Aguilar, J.F. & Adu, Augustina, 2018. "Stability analysis and optimal control of a fractional human African trypanosomiasis model," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 150-160.
    15. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    16. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Atangana, Abdon & Araz, Seda İğret, 2019. "Analysis of a new partial integro-differential equation with mixed fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 257-271.
    18. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    19. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    20. Jarad, Fahd & Abdeljawad, Thabet & Hammouch, Zakia, 2018. "On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 16-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.