IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v206y2023icp614-635.html
   My bibliography  Save this article

Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian

Author

Listed:
  • Fardi, M.
  • Zaky, M.A.
  • Hendy, A.S.

Abstract

In this paper, the multi-term temporal fractional order and temporal distributed-order parabolic equations with fractional Laplacian are numerically investigated. Several unconditional stable difference schemes based on non-uniform meshes for solving these differential equations are provided. We find that the constructed nonuniform difference schemes are convergent and it has been shown that the temporal convergence rate is faster and more accurate compared to the uniform difference schemes in case of nonsmooth solutions with respect to time. Some numerical examples are given to verify the theoretical findings.

Suggested Citation

  • Fardi, M. & Zaky, M.A. & Hendy, A.S., 2023. "Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 614-635.
  • Handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:614-635
    DOI: 10.1016/j.matcom.2022.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hafez, Ramy M. & Zaky, Mahmoud A. & Hendy, Ahmed S., 2021. "A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 678-690.
    2. Luo, Man & Qiu, Wenlin & Nikan, Omid & Avazzadeh, Zakieh, 2023. "Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Lin & Sergiy Reutskiy & Yuhui Zhang & Yu Sun & Jun Lu, 2023. "The Novel Analytical–Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions," Mathematics, MDPI, vol. 11(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswas, Chetna & Singh, Anup & Chopra, Manish & Das, Subir, 2023. "Study of fractional-order reaction-advection-diffusion equation using neural network method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 15-27.
    2. Tang, Bo & Mao, Wenting & Zeng, Zhankuan, 2024. "A priori and a posteriori error estimates of a space–time Petrov–Galerkin spectral method for time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 559-572.
    3. Omran, A.K. & Zaky, M.A. & Hendy, A.S. & Pimenov, V.G., 2022. "An easy to implement linearized numerical scheme for fractional reaction–diffusion equations with a prehistorical nonlinear source function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 218-239.
    4. Faheem, Mo & Khan, Arshad & Raza, Akmal, 2022. "A high resolution Hermite wavelet technique for solving space–time-fractional partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 588-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:614-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.