IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p682-d1050286.html
   My bibliography  Save this article

Recent Advances in Stochastic Gradient Descent in Deep Learning

Author

Listed:
  • Yingjie Tian

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
    Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China
    Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China)

  • Yuqi Zhang

    (School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Haibin Zhang

    (Beijing Institute for Scientific and Engineering Computing, Faculty of Science, Beijing University of Technology, Beijing 100124, China)

Abstract

In the age of artificial intelligence, the best approach to handling huge amounts of data is a tremendously motivating and hard problem. Among machine learning models, stochastic gradient descent (SGD) is not only simple but also very effective. This study provides a detailed analysis of contemporary state-of-the-art deep learning applications, such as natural language processing (NLP), visual data processing, and voice and audio processing. Following that, this study introduces several versions of SGD and its variant, which are already in the PyTorch optimizer, including SGD, Adagrad, adadelta, RMSprop, Adam, AdamW, and so on. Finally, we propose theoretical conditions under which these methods are applicable and discover that there is still a gap between theoretical conditions under which the algorithms converge and practical applications, and how to bridge this gap is a question for the future.

Suggested Citation

  • Yingjie Tian & Yuqi Zhang & Haibin Zhang, 2023. "Recent Advances in Stochastic Gradient Descent in Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:682-:d:1050286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rulei Qi & Dan Xue & Yujia Zhai, 2024. "A Momentum-Based Adaptive Primal–Dual Stochastic Gradient Method for Non-Convex Programs with Expectation Constraints," Mathematics, MDPI, vol. 12(15), pages 1-26, July.
    2. Seung-Hwan Lee & Sung-Hak Lee, 2024. "U-Net-Based Learning Using Enhanced Lane Detection with Directional Lane Attention Maps for Various Driving Environments," Mathematics, MDPI, vol. 12(8), pages 1-24, April.
    3. Cong Shen & Wei Zhang & Tanping Zhou & Lingling Zhang, 2024. "A Security-Enhanced Federated Learning Scheme Based on Homomorphic Encryption and Secret Sharing," Mathematics, MDPI, vol. 12(13), pages 1-20, June.
    4. Vasiliki Rokani & Stavros D. Kaminaris & Petros Karaisas & Dimitrios Kaminaris, 2023. "Power Transformer Fault Diagnosis Using Neural Network Optimization Techniques," Mathematics, MDPI, vol. 11(22), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    4. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    5. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    6. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    7. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    8. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    9. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    10. Hang Yu & Yuanjia Wang & Donglin Zeng, 2023. "A general framework of nonparametric feature selection in high‐dimensional data," Biometrics, The International Biometric Society, vol. 79(2), pages 951-963, June.
    11. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    12. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    13. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    14. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    15. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    16. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    18. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    19. Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
    20. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:682-:d:1050286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.