IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1206-d1377463.html
   My bibliography  Save this article

U-Net-Based Learning Using Enhanced Lane Detection with Directional Lane Attention Maps for Various Driving Environments

Author

Listed:
  • Seung-Hwan Lee

    (School of Electronic and Electrical Engineering, Kyungpook National University, 80 Deahakro, Buk-Gu, Daegu 41566, Republic of Korea)

  • Sung-Hak Lee

    (School of Electronic and Electrical Engineering, Kyungpook National University, 80 Deahakro, Buk-Gu, Daegu 41566, Republic of Korea)

Abstract

Recent advancements in optical and electronic sensor technologies, coupled with the proliferation of computing devices (such as GPUs), have enabled real-time autonomous driving systems to become a reality. Hence, research in algorithmic advancements for advanced driver assistance systems (ADASs) is rapidly expanding, with a primary focus on enhancing robust lane detection capabilities to ensure safe navigation. Given the widespread adoption of cameras on the market, lane detection relies heavily on image data. Recently, CNN-based methods have attracted attention due to their effective performance in lane detection tasks. However, with the expansion of the global market, the endeavor to achieve reliable lane detection has encountered challenges presented by diverse environmental conditions and road scenarios. This paper presents an approach that focuses on detecting lanes in road areas traversed by vehicles equipped with cameras. In the proposed method, a U-Net based framework is employed for training, and additional lane-related information is integrated into a four-channel input data format that considers lane characteristics. The fourth channel serves as the edge attention map (E-attention map), helping the modules achieve more specialized learning regarding the lane. Additionally, the proposition of an approach to assign weights to the loss function during training enhances the stability and speed of the learning process, enabling robust lane detection. Through ablation experiments, the optimization of each parameter and the efficiency of the proposed method are demonstrated. Also, the comparative analysis with existing CNN-based lane detection algorithms shows that the proposed training method demonstrates superior performance.

Suggested Citation

  • Seung-Hwan Lee & Sung-Hak Lee, 2024. "U-Net-Based Learning Using Enhanced Lane Detection with Directional Lane Attention Maps for Various Driving Environments," Mathematics, MDPI, vol. 12(8), pages 1-24, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1206-:d:1377463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingjie Tian & Yuqi Zhang & Haibin Zhang, 2023. "Recent Advances in Stochastic Gradient Descent in Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rulei Qi & Dan Xue & Yujia Zhai, 2024. "A Momentum-Based Adaptive Primal–Dual Stochastic Gradient Method for Non-Convex Programs with Expectation Constraints," Mathematics, MDPI, vol. 12(15), pages 1-26, July.
    2. Cong Shen & Wei Zhang & Tanping Zhou & Lingling Zhang, 2024. "A Security-Enhanced Federated Learning Scheme Based on Homomorphic Encryption and Secret Sharing," Mathematics, MDPI, vol. 12(13), pages 1-21, June.
    3. Vasiliki Rokani & Stavros D. Kaminaris & Petros Karaisas & Dimitrios Kaminaris, 2023. "Power Transformer Fault Diagnosis Using Neural Network Optimization Techniques," Mathematics, MDPI, vol. 11(22), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1206-:d:1377463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.