IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p525-d1040336.html
   My bibliography  Save this article

Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology

Author

Listed:
  • Mihail Senyuk

    (Department of Automated Electrical Systems, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Murodbek Safaraliev

    (Department of Automated Electrical Systems, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Firuz Kamalov

    (Department of Electrical Engineering, Canadian University Dubai, Dubai P.O. Box 415053, United Arab Emirates)

  • Hana Sulieman

    (Department of Mathematics and Statistics, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

Abstract

This work employs machine learning methods to develop and test a technique for dynamic stability analysis of the mathematical model of a power system. A distinctive feature of the proposed method is the absence of a priori parameters of the power system model. Thus, the adaptability of the dynamic stability assessment is achieved. The selected research topic relates to the issue of changing the structure and parameters of modern power systems. The key features of modern power systems include the following: decreased total inertia caused by integration of renewable sources energy, stricter requirements for emergency control accuracy, highly digitized operation and control of power systems, and high volumes of data that describe power system operation. Arranging emergency control in these new conditions is one of the prominent problems in modern power systems. In this study, the emergency control algorithms based on ensemble machine learning algorithms (XGBoost and Random Forest) were developed for a low-inertia power system. Transient stability of a power system was analyzed as the base function. Features of transmission line maintenance were used to increase accuracy of estimation. Algorithms were tested using the test power system IEEE39. In the case of the test sample, accuracy of instability classification for XGBoost was 91.5%, while that for Random Forest was 81.6%. The accuracy of algorithms increased by 10.9% and 1.5%, respectively, when the topology of the power system was taken into account.

Suggested Citation

  • Mihail Senyuk & Murodbek Safaraliev & Firuz Kamalov & Hana Sulieman, 2023. "Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:525-:d:1040336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2021. "Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble," Energies, MDPI, vol. 14(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Pazderin & Inga Zicmane & Mihail Senyuk & Pavel Gubin & Ilya Polyakov & Nikita Mukhlynin & Murodbek Safaraliev & Firuz Kamalov, 2023. "Directions of Application of Phasor Measurement Units for Control and Monitoring of Modern Power Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-43, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petar Sarajcev & Dino Lovric, 2024. "Machine Learning Classifier for Supporting Generator’s Impedance-Based Relay Protection Functions," Energies, MDPI, vol. 17(8), pages 1-16, April.
    2. Konrad Hawron & Bartosz Rozegnał & Maciej Sułowicz, 2024. "Transient Active Power in Two-Terminal Networks," Energies, MDPI, vol. 17(18), pages 1-17, September.
    3. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    4. Petar Sarajcev & Dino Lovric, 2023. "Manifold Learning in Electric Power System Transient Stability Analysis," Energies, MDPI, vol. 16(23), pages 1-20, November.
    5. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    6. Teshome Lindi Kumissa & Fekadu Shewarega, 2023. "Fast Power System Transient Stability Simulation," Energies, MDPI, vol. 16(20), pages 1-17, October.
    7. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
    8. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:525-:d:1040336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.