IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v25y2019i1d10.1007_s10985-018-9421-z.html
   My bibliography  Save this article

Robust estimation in accelerated failure time models

Author

Listed:
  • Sanjoy K. Sinha

    (Carleton University)

Abstract

The accelerated failure time model is widely used for analyzing censored survival times often observed in clinical studies. It is well-known that the ordinary maximum likelihood estimators of the parameters in the accelerated failure time model are generally sensitive to potential outliers or small deviations from the underlying distributional assumptions. In this paper, we propose and explore a robust method for fitting the accelerated failure time model to survival data by bounding the influence of outliers in both the outcome variable and associated covariates. We also develop a sandwich-type variance–covariance function for approximating the variances of the proposed robust estimators. The finite-sample properties of the estimators are investigated based on empirical results from an extensive simulation study. An application is provided using actual data from a clinical study of primary breast cancer patients.

Suggested Citation

  • Sanjoy K. Sinha, 2019. "Robust estimation in accelerated failure time models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 52-78, January.
  • Handle: RePEc:spr:lifeda:v:25:y:2019:i:1:d:10.1007_s10985-018-9421-z
    DOI: 10.1007/s10985-018-9421-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-018-9421-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-018-9421-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Locatelli, Isabella & Marazzi, Alfio & Yohai, Victor J., 2011. "Robust accelerated failure time regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 874-887, January.
    2. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    3. Alessandra Nardi & Michael Schemper, 1999. "New Residuals for Cox Regression and Their Application to Outlier Screening," Biometrics, The International Biometric Society, vol. 55(2), pages 523-529, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Braima S. Mastor & Abdulaziz S. Alghamdi & Oscar Ngesa & Joseph Mung’atu & Christophe Chesneau & Ahmed Z. Afify, 2023. "The Extended Exponential-Weibull Accelerated Failure Time Model with Application to Sudan COVID-19 Data," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
    2. Jad Beyhum & Ingrid Keilegom, 2023. "Robust censored regression with $$\ell _1$$ ℓ 1 -norm regularization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 146-162, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    2. Nuriye Sancar & Deniz Inan, 2018. "A novel method as a diagnostic tool for the detection of influential observations in the Cox proportional hazards model," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 1253-1266, December.
    3. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    4. Fiaschi, Davide & Giuliani, Elisa & Nieri, Federica & Salvati, Nicola, 2020. "How bad is your company? Measuring corporate wrongdoing beyond the magic of ESG metrics," Business Horizons, Elsevier, vol. 63(3), pages 287-299.
    5. Ricardo A. Maronna & Victor J. Yohai, 2021. "Optimal robust estimators for families of distributions on the integers," Statistical Papers, Springer, vol. 62(5), pages 2269-2281, October.
    6. Krichene, H. & Geiger, T. & Frieler, K. & Willner, S.N. & Sauer, I. & Otto, C., 2021. "Long-term impacts of tropical cyclones and fluvial floods on economic growth – Empirical evidence on transmission channels at different levels of development," World Development, Elsevier, vol. 144(C).
    7. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    8. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    9. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.
    10. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    11. Cantoni, Eva & de Luna, Xavier, 2020. "Semiparametric inference with missing data: Robustness to outliers and model misspecification," Econometrics and Statistics, Elsevier, vol. 16(C), pages 108-120.
    12. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    13. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2009. "Robust empirical likelihood inference for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2101-2108, October.
    14. Durdu Karasoy & Nuray Tuncer, 2015. "Outliers in Survival Analysis," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 139-152, December.
    15. Riani, Marco & Atkinson, Anthony C., 2010. "Robust model selection with flexible trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3300-3312, December.
    16. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.
    17. Bellio, Ruggero, 2007. "Algorithms for bounded-influence estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2531-2541, February.
    18. Ana M. Bianco & Graciela Boente & Gonzalo Chebi, 2022. "Penalized robust estimators in sparse logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 563-594, September.
    19. Elena Fabrizi & Alessio Farcomeni & Valerio Gatta, 2012. "Modelling work history patterns in the Italian labour market," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 227-247, June.
    20. Luciano Ciravegna & Federica Nieri, 2022. "Business and Human Rights: A Configurational View of the Antecedents of Human Rights Infringements by Emerging Market Firms," Journal of Business Ethics, Springer, vol. 179(2), pages 431-450, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:25:y:2019:i:1:d:10.1007_s10985-018-9421-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.