IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p5000-d1302423.html
   My bibliography  Save this article

The Inverse Weber Problem on the Plane and the Sphere

Author

Listed:
  • Franco Rubio-López

    (Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo 13001, Peru)

  • Obidio Rubio

    (Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo 13001, Peru)

  • Rolando Urtecho Vidaurre

    (Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo 13001, Peru)

Abstract

Weber’s inverse problem in the plane is to modify the positive weights associated with n fixed points in the plane at minimum cost, ensuring that a given point a priori becomes the Euclidean weighted geometric median. In this paper, we investigate Weber’s inverse problem in the plane and generalize it to the surface of the sphere. Our study uses a subspace orthogonal to a subspace generated by two vectors X and Y associated with the given points and weights. The main achievement of our work lies in determining a vector perpendicular to the vectors X and Y , in R n ; which is used to determinate a solution of Weber’s inverse problem. In addition, lower bounds are obtained for the minimum of the Weber function, and an upper bound for the difference of the minimal of Weber’s direct and inverse problems. Examples of application at the plane and unit sphere are given.

Suggested Citation

  • Franco Rubio-López & Obidio Rubio & Rolando Urtecho Vidaurre, 2023. "The Inverse Weber Problem on the Plane and the Sphere," Mathematics, MDPI, vol. 11(24), pages 1-23, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:5000-:d:1302423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/5000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/5000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Hansen & Dominique Peeters & Denis Richard & Jacques-Francois Thisse, 1985. "The Minisum and Minimax Location Problems Revisited," Operations Research, INFORMS, vol. 33(6), pages 1251-1265, December.
    2. Zvi Drezner & George O. Wesolowsky, 1983. "Minimax and maximin facility location problems on a sphere," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 30(2), pages 305-312, June.
    3. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    4. Zhang, Jianzhong & Liu, Zhenhong & Ma, Zhongfan, 2000. "Some reverse location problems," European Journal of Operational Research, Elsevier, vol. 124(1), pages 77-88, July.
    5. Zvi Drezner, 1981. "Technical Note—On Location Dominance on Spherical Surfaces," Operations Research, INFORMS, vol. 29(6), pages 1218-1219, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvi Drezner, 1988. "Location strategies for satellites' orbits," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 503-512, October.
    2. Minnie H. Patel & Deborah L. Nettles & Stuart J. Deutsch, 1993. "A linear‐programming‐based method for determining whether or not n demand points are on a hemisphere," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 543-552, June.
    3. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    4. Mordechai Jaeger & Jeff Goldberg, 1997. "Polynomial algorithms for center location on spheres," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 341-352, June.
    5. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    6. Romero-Morales, Dolores & Carrizosa, Emilio & Conde, Eduardo, 1997. "Semi-obnoxious location models: A global optimization approach," European Journal of Operational Research, Elsevier, vol. 102(2), pages 295-301, October.
    7. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    8. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    9. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    10. Daniel Scholz, 2010. "The multicriteria big cube small cube method," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 286-302, July.
    11. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    12. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    13. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    14. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    15. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    16. Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Behrooz Alizadeh & Rainer Burkard, 2013. "A linear time algorithm for inverse obnoxious center location problems on networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 585-594, September.
    18. Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
    19. Skriver, Anders J. V. & Andersen, Kim Allan, 2003. "The bicriterion semi-obnoxious location (BSL) problem solved by an [epsilon]-approximation," European Journal of Operational Research, Elsevier, vol. 146(3), pages 517-528, May.
    20. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:5000-:d:1302423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.