IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v6y2002i2d10.1023_a1013807829021.html
   My bibliography  Save this article

A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm

Author

Listed:
  • Jianzhong Zhang

    (City University of Hong Kong)

  • Zhenhong Liu

    (Academia Sinica)

Abstract

This paper proposes an optimization model and shows that most inverse combinatorial optimization problems so far discussed can be fit into this model as special cases. We propose a Newton-type algorithm for this model under l ∞ norm. This algorithm can solve the model in strongly polynomial time if the subproblem involved is solvable in strongly polynomial time for any fixed value of the parameter appearing in the subproblem, and it is shown that most particular inverse optimization problems encountered are this kind. Therefore, through this paper we show that a large group of inverse optimization problems can be handled in a uniform way and solved in strongly polynomial time.

Suggested Citation

  • Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
  • Handle: RePEc:spr:jcomop:v:6:y:2002:i:2:d:10.1023_a:1013807829021
    DOI: 10.1023/A:1013807829021
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1013807829021
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1013807829021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jianzhong & Liu, Zhenhong & Ma, Zhongfan, 2000. "Some reverse location problems," European Journal of Operational Research, Elsevier, vol. 124(1), pages 77-88, July.
    2. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    2. Çiğdem Güler & Horst W. Hamacher, 2010. "Capacity inverse minimum cost flow problem," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 43-59, January.
    3. Egri, Péter & Kis, Tamás & Kovács, András & Váncza, József, 2014. "An inverse economic lot-sizing approach to eliciting supplier cost parameters," International Journal of Production Economics, Elsevier, vol. 149(C), pages 80-88.
    4. Chen, Lu & Chen, Yuyi & Langevin, André, 2021. "An inverse optimization approach for a capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1087-1098.
    5. Yong He & Binwu Zhang & Enyu Yao, 2005. "Weighted Inverse Minimum Spanning Tree Problems Under Hamming Distance," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 91-100, February.
    6. Xiucui Guan & Panos Pardalos & Xia Zuo, 2015. "Inverse Max + Sum spanning tree problem by modifying the sum-cost vector under weighted $$l_\infty $$ l ∞ Norm," Journal of Global Optimization, Springer, vol. 61(1), pages 165-182, January.
    7. Junhua Jia & Xiucui Guan & Qiao Zhang & Xinqiang Qian & Panos M. Pardalos, 2022. "Inverse max+sum spanning tree problem under weighted $$l_{\infty }$$ l ∞ norm by modifying max-weight vector," Journal of Global Optimization, Springer, vol. 84(3), pages 715-738, November.
    8. Abd Allah A. Mousa & Yousria Abo-Elnaga, 2020. "Stability of Solutions for Parametric Inverse Nonlinear Cost Transportation Problem," Mathematics, MDPI, vol. 8(11), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burkard, Rainer E. & Lin, Yixun & Zhang, Jianzhong, 2004. "Weight reduction problems with certain bottleneck objectives," European Journal of Operational Research, Elsevier, vol. 153(1), pages 191-199, February.
    2. Steffen Rebennack & Ashwin Arulselvan & Lily Elefteriadou & Panos M. Pardalos, 2010. "Complexity analysis for maximum flow problems with arc reversals," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 200-216, February.
    3. Hassin, Refael & Sarid, Anna, 2018. "Operations research applications of dichotomous search," European Journal of Operational Research, Elsevier, vol. 265(3), pages 795-812.
    4. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    5. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    6. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    7. Evgeny Gurevsky & Sergey Kovalev & Mikhail Y. Kovalyov, 2021. "Min-max controllable risk problems," 4OR, Springer, vol. 19(1), pages 93-101, March.
    8. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    9. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    10. Akiyoshi Shioura, 2015. "Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility Under Budget Constraints," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 192-225, February.
    11. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    12. Danny Z. Chen & Ovidiu Daescu & Yang Dai & Naoki Katoh & Xiaodong Wu & Jinhui Xu, 2005. "Efficient Algorithms and Implementations for Optimizing the Sum of Linear Fractional Functions, with Applications," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 69-90, February.
    13. Chakravarti, N. & Wagelmans, A.P.M., 1997. "Calculation of Stability Radii for Combinatorial Optimization Problems," Econometric Institute Research Papers EI 9740/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Johannes O. Royset & R. Kevin Wood, 2007. "Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 175-184, May.
    15. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    16. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    17. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    18. J. Puerto & A. M. Rodríguez-Chía & A. Tamir, 2009. "Minimax Regret Single-Facility Ordered Median Location Problems on Networks," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 77-87, February.
    19. José R. Correa & Asaf Levin, 2009. "Monotone Covering Problems with an Additional Covering Constraint," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 238-248, February.
    20. Samyukta Sethuraman & Sergiy Butenko, 2015. "The maximum ratio clique problem," Computational Management Science, Springer, vol. 12(1), pages 197-218, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:6:y:2002:i:2:d:10.1023_a:1013807829021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.