IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4546-d1274098.html
   My bibliography  Save this article

An Automatic Train Operation Based Real-Time Rescheduling Model for High-Speed Railway

Author

Listed:
  • Fan Liu

    (School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Jing Xun

    (School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

With the continuous development of the Automatic Train Operation (ATO) system in high-speed railways, automatic driving is progressively supplanting manual operations, ushering in a new era of predictability and reliability for high-speed railway transport. Concurrently, the advent of the ATO system provides a notable impact on real-time rescheduling during disruptions, as it equips dispatchers with precise insights into train operation statuses. This paper is dedicated to a thorough analysis of how the transition to automatic driving in train operations influences the real-time rescheduling model. Based on the distinctive impact of the ATO system on real-time rescheduling, we have proposed a mixed-integer linear programming model that combines train re-timing, reordering, and the minimization of passenger delays. To validate the effectiveness of our model, we present several experiments conducted using data from the Beijing–Shanghai high-speed railway line. The results unequivocally demonstrate that our ATO-based model significantly mitigates train delay time, demonstrating its practical value in optimizing high-speed railway operations.

Suggested Citation

  • Fan Liu & Jing Xun, 2023. "An Automatic Train Operation Based Real-Time Rescheduling Model for High-Speed Railway," Mathematics, MDPI, vol. 11(21), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4546-:d:1274098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Törnquist, Johanna & Persson, Jan A., 2007. "N-tracked railway traffic re-scheduling during disturbances," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 342-362, March.
    2. Dorfman, M. J. & Medanic, J., 2004. "Scheduling trains on a railway network using a discrete event model of railway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 81-98, January.
    3. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    4. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    5. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    2. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    3. Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
    4. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    5. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
    6. Xu, Peijuan & Corman, Francesco & Peng, Qiyuan & Luan, Xiaojie, 2017. "A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 638-666.
    7. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    8. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    9. Hangfei Huang & Keping Li & Paul Schonfeld, 2018. "Real-time energy-saving metro train rescheduling with primary delay identification," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
    10. Corman, F. & D’Ariano, A. & Pacciarelli, D. & Pranzo, M., 2012. "Optimal inter-area coordination of train rescheduling decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 71-88.
    11. Xuelei Meng & Yahui Wang & Li Lin & Lei Li & Limin Jia, 2021. "An Integrated Model of Train Re-Scheduling and Control for High-Speed Railway," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    12. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    13. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    14. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    15. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    16. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    17. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    18. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    19. Pellegrini, Paola & Pesenti, Raffaele & Rodriguez, Joaquin, 2019. "Efficient train re-routing and rescheduling: Valid inequalities and reformulation of RECIFE-MILP," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 33-48.
    20. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4546-:d:1274098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.