IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v104y2017icp638-666.html
   My bibliography  Save this article

A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system

Author

Listed:
  • Xu, Peijuan
  • Corman, Francesco
  • Peng, Qiyuan
  • Luan, Xiaojie

Abstract

Chinese high-speed railways faced a fast development in recent years. Their performances are still confronted with disruptions unavoidably, which impact on the reliability of the traffic and passenger satisfaction. This paper presents a rescheduling model which is able to solve the critical problem of effective disruption management (namely, fast and dynamic train speed adaptation, supervision of braking and changing train sequence due to incidents, warnings or alarms), and consider in detail the signalling and safety systems based on a quasi-moving block system with variable headways. We integrate the modelling of efficient traffic management measures and the supervision of speed, braking and headway in one general job-shop model. We use a commercial solver with a custom-designed two-step method to speed up the procedure in order to solve instances from real-world high-speed networks in China quickly. Overall, the approach guarantees the resolution of the traffic control and speed management within few minutes of computation time. The output demonstrates that the proposed approach can achieve a reduction of train delays by 70% compared to the solution determined by keeping the order of the original timetable, and get the optimality for more than 90% of instances with a realistic case.

Suggested Citation

  • Xu, Peijuan & Corman, Francesco & Peng, Qiyuan & Luan, Xiaojie, 2017. "A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 638-666.
  • Handle: RePEc:eee:transb:v:104:y:2017:i:c:p:638-666
    DOI: 10.1016/j.trb.2017.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516305227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Törnquist, Johanna & Persson, Jan A., 2007. "N-tracked railway traffic re-scheduling during disturbances," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 342-362, March.
    2. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    3. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
    4. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.
    5. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    6. Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
    7. Thomas Albrecht, 2009. "The Influence of Anticipating Train Driving on the Dispatching Process in Railway Conflict Situations," Networks and Spatial Economics, Springer, vol. 9(1), pages 85-101, March.
    8. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    9. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    10. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
    11. Mazzarello, Maura & Ottaviani, Ennio, 2007. "A traffic management system for real-time traffic optimisation in railways," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 246-274, February.
    12. Dollevoet, T.A.B. & Corman, F. & D'Ariano, A. & Huisman, D., 2012. "An Iterative Optimization Framework for Delay Management and Train Scheduling," Econometric Institute Research Papers EI 2012-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    14. Haahr, Jørgen Thorlund & Pisinger, David & Sabbaghian, Mohammad, 2017. "A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 167-182.
    15. F. Corman & A. D'Ariano & M. Pranzo & I.A. Hansen, 2011. "Effectiveness of dynamic reordering and rerouting of trains in a complicated and densely occupied station area," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(4), pages 341-362, March.
    16. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuelei Meng & Yahui Wang & Li Lin & Lei Li & Limin Jia, 2021. "An Integrated Model of Train Re-Scheduling and Control for High-Speed Railway," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    2. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Yidong Wang & Rui Song & Shiwei He & Zilong Song, 2022. "Train Routing and Track Allocation Optimization Model of Multi-Station High-Speed Railway Hub," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    4. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    5. Wang, Xuekai & D’Ariano, Andrea & Su, Shuai & Tang, Tao, 2023. "Cooperative train control during the power supply shortage in metro system: A multi-agent reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 244-278.
    6. Annunziata Esposito Amideo & Stefano Starita & Maria Paola Scaparra, 2019. "Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    7. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    8. Sairong Peng & Xin Yang & Hongwei Wang & Hairong Dong & Bin Ning & Haichuan Tang & Zhipeng Ying & Ruijun Tang, 2019. "Dispatching High-Speed Rail Trains via Utilizing the Reverse Direction Track: Adaptive Rescheduling Strategies and Application," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    9. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    10. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.
    11. Wang, Hui & Li, Feng & Jia, Bin & Gao, Ziyou & Liu, Jialin & Zhang, Hongliang & Song, Dongdong, 2024. "Enhancing the evacuation efficiency through the two-step optimization of train timetable and response vehicles during metro disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    12. Luan, Xiaojie & De Schutter, Bart & Meng, Lingyun & Corman, Francesco, 2020. "Decomposition and distributed optimization of real-time traffic management for large-scale railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 72-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.
    2. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    3. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    4. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.
    5. Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
    6. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
    7. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    8. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    9. Luan, Xiaojie & De Schutter, Bart & Meng, Lingyun & Corman, Francesco, 2020. "Decomposition and distributed optimization of real-time traffic management for large-scale railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 72-97.
    10. Lamorgese, Leonardo & Mannino, Carlo & Natvig, Erik, 2017. "An exact micro–macro approach to cyclic and non-cyclic train timetabling," Omega, Elsevier, vol. 72(C), pages 59-70.
    11. Pellegrini, Paola & Pesenti, Raffaele & Rodriguez, Joaquin, 2019. "Efficient train re-routing and rescheduling: Valid inequalities and reformulation of RECIFE-MILP," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 33-48.
    12. Zhu, Yongqiu & Goverde, Rob M.P., 2019. "Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 149-181.
    13. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    14. Zhan, Shuguang & Kroon, Leo G. & Zhao, Jun & Peng, Qiyuan, 2016. "A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 32-61.
    15. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    16. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    17. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    18. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    19. Corman, F. & D’Ariano, A. & Pacciarelli, D. & Pranzo, M., 2012. "Optimal inter-area coordination of train rescheduling decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 71-88.
    20. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:104:y:2017:i:c:p:638-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.