IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4451-d1268639.html
   My bibliography  Save this article

On Solving Stochastic Optimization Problems

Author

Listed:
  • Ovidiu Blăjină

    (Manufacturing Engineering Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, Splaiul Independenţei 313, Dist. 6, 060042 Bucharest, Romania)

  • Ionuţ Gabriel Ghionea

    (Manufacturing Engineering Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, Splaiul Independenţei 313, Dist. 6, 060042 Bucharest, Romania)

Abstract

Many optimization mathematical models, associated with the technical-economic processes of real-world problems, have elements of uncertainty in their structure, which places them in stochastic optimization programming. Their diversity and complexity, due to the large uncertainty space, require special methods of solving, because there is no general solution method. Within this context, in this paper we consider the category of optimization models that can contain random variable type coefficients and/or imposed probability levels on the constraints. The purpose of the paper is to propose a methodology dedicated to these studied models. Applying the methodology leads to developing a deterministic linear programming model, associated with the initial stochastic model. In fact, the proposed methodology reduces the stochastic formulation to a deterministic formulation. The methodology is illustrated with a numerical case study based on a manufacturing problem. Solving the obtained deterministic model is carried out in the version assisted by a specialized software product ( WinQSB Version 2.0). It allows for the performing of a sensitivity analysis of the optimal solution, and/or a parametric analysis relative to certain model coefficients, both also presented in the paper. The main result of the study in this paper is the proposed methodology, which is applicable on a large scale, for any mathematical model of stochastic optimization of the mentioned type, regardless of complexity, dimensions and the domain of the process to which it is associated. The numerical results obtained when applying this methodology indicate its efficiency and effectiveness in finding the solution for the studied models. The approach to this issue in the present paper is determined by the wide range of stochastic optimization problems in the various studied real-life processes and by the imperative need to adopt the best decisions in conditions of uncertainty.

Suggested Citation

  • Ovidiu Blăjină & Ionuţ Gabriel Ghionea, 2023. "On Solving Stochastic Optimization Problems," Mathematics, MDPI, vol. 11(21), pages 1-16, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4451-:d:1268639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    2. Wang, Chong & Wang, Qi & Xiang, Xi & Zhang, Canrong & Miao, Lixin, 2025. "Optimizing integrated berth allocation and quay crane assignment: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 320(3), pages 593-615.
    3. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    4. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    5. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    6. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    7. Adi Ben-Israel & Aharon Ben-Tal, 1997. "Duality and equilibrium prices in economics of uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 51-85, February.
    8. Garoian, Lee & Conner, J. Richard & Scifres, C.J., 1987. "A Discrete Stochastic Programming Model To Estimate Optimal Burning Schedules On Rangeland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(2), pages 1-8, December.
    9. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    10. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    11. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    12. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    13. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    14. repec:dgr:rugsom:03a14 is not listed on IDEAS
    15. John Bistline & John Weyant, 2013. "Electric sector investments under technological and policy-related uncertainties: a stochastic programming approach," Climatic Change, Springer, vol. 121(2), pages 143-160, November.
    16. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    17. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    18. Andrea Beltratti & Andrea Consiglio & Stavros Zenios, 1999. "Scenario modeling for the management ofinternational bond portfolios," Annals of Operations Research, Springer, vol. 85(0), pages 227-247, January.
    19. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    20. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    21. Silvia Araújo dos Reis & José Eugenio Leal & Antônio Márcio Tavares Thomé, 2023. "A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain," Logistics, MDPI, vol. 7(3), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4451-:d:1268639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.