IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p872-d269133.html
   My bibliography  Save this article

Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function

Author

Listed:
  • SAIRA

    (School of Mathematics and Statistics, Central South University, Changsha 410083, China
    Current address: School of Mathematics and Statistics, Central South University, Changsha 410083, China.)

  • Shuhuang Xiang

    (School of Mathematics and Statistics, Central South University, Changsha 410083, China
    Current address: School of Mathematics and Statistics, Central South University, Changsha 410083, China.)

  • Guidong Liu

    (School of Statistics and Mathematics, Nanjing Audit University, Nanjing 211815, China)

Abstract

This paper aims to present a Clenshaw–Curtis–Filon quadrature to approximate the solution of various cases of Cauchy-type singular integral equations (CSIEs) of the second kind with a highly oscillatory kernel function. We adduce that the zero case oscillation ( k = 0) proposed method gives more accurate results than the scheme introduced in Dezhbord at el. (2016) and Eshkuvatov at el. (2009) for small values of N. Finally, this paper illustrates some error analyses and numerical results for CSIEs.

Suggested Citation

  • SAIRA & Shuhuang Xiang & Guidong Liu, 2019. "Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function," Mathematics, MDPI, vol. 7(10), pages 1-11, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:872-:d:269133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Guidong & Xiang, Shuhuang, 2019. "Clenshaw–Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 251-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SAIRA & Wen-Xiu Ma, 2022. "An Approximation Method to Compute Highly Oscillatory Singular Fredholm Integro-Differential Equations," Mathematics, MDPI, vol. 10(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bin & Xiang, Shuhuang, 2019. "Efficient methods for highly oscillatory integrals with weakly singular and hypersingular kernels," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. SAIRA & Wen-Xiu Ma, 2022. "An Approximation Method to Compute Highly Oscillatory Singular Fredholm Integro-Differential Equations," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    3. Liu, Guidong & Xiang, Shuhuang, 2023. "An efficient quadrature rule for weakly and strongly singular integrals," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    4. Jianyu Wang & Chunhua Fang & Guifeng Zhang, 2023. "Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    5. Kang, Hongchao & Wang, Ruoxia & Zhang, Meijuan & Xiang, Chunzhi, 2023. "Efficient and accurate quadrature methods of Fourier integrals with a special oscillator and weak singularities," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    6. Xu, Zhenhua & Geng, Hongrui & Fang, Chunhua, 2020. "Asymptotics and numerical approximation of highly oscillatory Hilbert transforms," Applied Mathematics and Computation, Elsevier, vol. 386(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:872-:d:269133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.