IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3959-d1242227.html
   My bibliography  Save this article

Finite-Difference Frequency-Domain Scheme for Sound Scattering by a Vortex with Perfectly Matched Layers

Author

Listed:
  • Yongou Zhang

    (Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
    School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Zhongjian Ling

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Hao Du

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Qifan Zhang

    (Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
    School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract

Understanding the effect of vortexes on sound propagation is of great significance in the field of target detection and acoustic imaging. A prediction algorithm of the two-dimensional vortex scattering is realized based on a finite-difference frequency-domain (FDFD) numerical scheme with perfectly matched layers (PML). Firstly, the governing equation for flow–sound interaction is given based on the perturbation theory, and the FDFD program is built. Subsequently, the mesh independence is verified, and the result has a good convergence when the mesh corresponds to over 15 nodes per wavelength. Then, computational parameters of the PML are discussed to achieve better absorbing boundary conditions. Finally, the results of this algorithm are compared with previous literature data. Results show that for different cortex scattering cases, the absorption coefficient should vary linearly with the density of the medium and the incident wave frequency. When the thickness of the PML boundary is greater than 2.5 times the wavelength, the PML boundary can absorb the scattering sound effectively. This provides a reliable algorithm for the numerical study of the effect of vortexes on sound propagation.

Suggested Citation

  • Yongou Zhang & Zhongjian Ling & Hao Du & Qifan Zhang, 2023. "Finite-Difference Frequency-Domain Scheme for Sound Scattering by a Vortex with Perfectly Matched Layers," Mathematics, MDPI, vol. 11(18), pages 1-11, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3959-:d:1242227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Brillant & F. Chillá & J.-F. Pinton, 2004. "Transmission of sound through a single vortex," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 37(2), pages 229-239, January.
    2. Jesús Flores & Ángel García & Mihaela Negreanu & Eduardo Salete & Francisco Ureña & Antonio M. Vargas, 2022. "Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method," Mathematics, MDPI, vol. 10(3), pages 1-9, January.
    3. Yang, Xuehua & Wu, Lijiao & Zhang, Haixiang, 2023. "A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity," Applied Mathematics and Computation, Elsevier, vol. 457(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    2. Abdumauvlen Berdyshev & Dossan Baigereyev & Kulzhamila Boranbek, 2023. "Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model," Mathematics, MDPI, vol. 11(17), pages 1-27, September.
    3. Han-Sol Lee & Changgyun Jin & Chanwoo Shin & Seong-Eun Kim, 2023. "Sparse Diffusion Least Mean-Square Algorithm with Hard Thresholding over Networks," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    4. Elif Tan & Diana Savin & Semih Yılmaz, 2023. "A New Class of Leonardo Hybrid Numbers and Some Remarks on Leonardo Quaternions over Finite Fields," Mathematics, MDPI, vol. 11(22), pages 1-14, November.
    5. Jun Zhang & Jingjing Zhang & Shangyou Zhang, 2023. "Explicit Symplectic Runge–Kutta–Nyström Methods Based on Roots of Shifted Legendre Polynomial," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    6. Ishtiaq Ali & Muhammad Yaseen & Muhammad Abdullah & Sana Khan & Fethi Bin Muhammad Belgacem, 2023. "An Innovative Numerical Method Utilizing Novel Cubic B-Spline Approximations to Solve Burgers’ Equation," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    7. Jiaqi Wang & Jianbing Su, 2023. "Boundedness and Compactness of Weighted Composition Operators from α -Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    8. Ismagil T. Habibullin & Aigul R. Khakimova & Alfya U. Sakieva, 2023. "Miura-Type Transformations for Integrable Lattices in 3D," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    9. Badriah Alamri, 2023. "Solving Integral Equation and Homotopy Result via Fixed Point Method," Mathematics, MDPI, vol. 11(21), pages 1-19, October.
    10. Salman Khalid & Jinwoo Song & Muhammad Muzammil Azad & Muhammad Umar Elahi & Jaehun Lee & Soo-Ho Jo & Heung Soo Kim, 2023. "A Comprehensive Review of Emerging Trends in Aircraft Structural Prognostics and Health Management," Mathematics, MDPI, vol. 11(18), pages 1-42, September.
    11. Jiří Holman, 2023. "Numerical Solution of Transition to Turbulence over Compressible Ramp at Hypersonic Velocity," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
    12. Jianyu Wang & Chunhua Fang & Guifeng Zhang, 2023. "Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    13. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    14. Jeffrey A. Hogan & Joseph D. Lakey, 2023. "Spatio–Spectral Limiting on Replacements of Tori by Cubes," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    15. Nazim & Nadeem Ur Rehman & Ahmad Alghamdi, 2023. "On Normalized Laplacian Spectra of the Weakly Zero-Divisor Graph of the Ring ℤ n," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    16. Li Cheng & Wen-Xiu Ma, 2023. "Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations," Mathematics, MDPI, vol. 11(19), pages 1-8, September.
    17. Jagdish S. Thakur & Archana Thakur & Lawrence G. Lum, 2023. "Mathematical Model to Predict Polyclonal T-Cell-Dependent Antibody Synthesis Responses," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    18. Amira F. Daghistani & Ahmed M. T. Abd El-Bar & Ahmed M. Gemeay & Mahmoud A. E. Abdelrahman & Samia Z. Hassan, 2023. "A Hyperbolic Secant-Squared Distribution via the Nonlinear Evolution Equation and Its Application," Mathematics, MDPI, vol. 11(20), pages 1-17, October.
    19. Sarfraz Nawaz Malik & Nazar Khan & Ferdous M. O. Tawfiq & Mohammad Faisal Khan & Qazi Zahoor Ahmad & Qin Xin, 2023. "Fuzzy Differential Subordination Associated with a General Linear Transformation," Mathematics, MDPI, vol. 11(22), pages 1-17, November.
    20. Huicong Zhong & Xiaobing Feng, 2023. "An Efficient and Fast Sparse Grid Algorithm for High-Dimensional Numerical Integration," Mathematics, MDPI, vol. 11(19), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3959-:d:1242227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.