IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v50y2018i2d10.1007_s11156-017-0638-9.html
   My bibliography  Save this article

The extent of virgin olive-oil prices’ distribution revealing the behavior of market speculators

Author

Listed:
  • Fathi Abid

    (University of Sfax)

  • Bilel Kaffel

    (University of Sfax)

Abstract

The major problem facing olive oil producers each winter campaign, contrary to what is expected, is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. The aim of this paper is to study the olive oil price formation mechanisms in order to learn about the traders’ behavior in the olive oil market. We econometrically study the price formation by implementing statistical models and we provide an economic explanation for the stylized facts detected in olive oil price series. For prediction purposes, we use the artificial neural network (ANN) approach. Our main findings indicate that the AR(1)-GJR(1,1) model and the Ornstein–Uhlenbeck process with stochastic volatility succeeded to some extent in capturing the series stylized facts. The unstable participants’ behavior creates the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation ANN approach with input information based on discrete wavelet decomposition and recent price past history.

Suggested Citation

  • Fathi Abid & Bilel Kaffel, 2018. "The extent of virgin olive-oil prices’ distribution revealing the behavior of market speculators," Review of Quantitative Finance and Accounting, Springer, vol. 50(2), pages 561-590, February.
  • Handle: RePEc:kap:rqfnac:v:50:y:2018:i:2:d:10.1007_s11156-017-0638-9
    DOI: 10.1007/s11156-017-0638-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11156-017-0638-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-017-0638-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    3. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. David S. Jacks & Kevin H. O'Rourke & Jeffrey G. Williamson, 2011. "Commodity Price Volatility and World Market Integration since 1700," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 800-813, August.
    5. Luis Ortega & Khaldoun Khashanah, 2014. "A Neuro‐wavelet Model for the Short‐Term Forecasting of High‐Frequency Time Series of Stock Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 134-146, March.
    6. Sentana, Enrique & Wadhwani, Sushil B, 1992. "Feedback Traders and Stock Return Autocorrelations: Evidence from a Century of Daily Data," Economic Journal, Royal Economic Society, vol. 102(411), pages 415-425, March.
    7. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Helyette Geman & V. Nguyen, 2005. "Soybeans Inventory and Forward Curve Dynamics," Post-Print halshs-00144292, HAL.
    10. Chi-Cheong Chris Wong & Man-Chung Chan & Chi-Chung Lam, 2000. "Financial Time Series Forecasting By Neural Network Using Conjugate Gradient Learning Algorithm And Multiple Linear Regression Weight Initialization," Computing in Economics and Finance 2000 61, Society for Computational Economics.
    11. A. Malliaris & Mary Malliaris, 2013. "Are oil, gold and the euro inter-related? Time series and neural network analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 1-14, January.
    12. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    13. Orlean, Andre, 1995. "Bayesian interactions and collective dynamics of opinion: Herd behavior and mimetic contagion," Journal of Economic Behavior & Organization, Elsevier, vol. 28(2), pages 257-274, October.
    14. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    15. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    16. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    17. Ramirez, Octavio A. & Fadiga, Mohamadou L., 2003. "Forecasting Agricultural Commodity Prices with Asymmetric-Error GARCH Models," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-15, April.
    18. Sharif Mozumder & Ghulam Sorwar & Kevin Dowd, 2013. "Option pricing under non-normality: a comparative analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(2), pages 273-292, February.
    19. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    20. António Rua, 2012. "Money Growth and Inflation in the Euro Area: A Time-Frequency View," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(6), pages 875-885, December.
    21. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    22. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    23. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner (ed.), 2009. "Handbook of Financial Markets: Dynamics and Evolution," Elsevier Monographs, Elsevier, edition 1, number 9780123742582.
    24. Westerhoff Frank H. & Reitz Stefan, 2003. "Nonlinearities and Cyclical Behavior: The Role of Chartists and Fundamentalists," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-15, December.
    25. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset Pricing Anomalies," Post-Print hal-01369851, HAL.
    26. Ondrej Filip & Karel Janda & Ladislav Kristoufek & David Zilberman, 2016. "Dynamics and evolution of the role of biofuels in global commodity and financial markets," Nature Energy, Nature, vol. 1(12), pages 1-9, December.
    27. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    28. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    29. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    30. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    31. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    32. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    33. Hélyette Geman & Vu-Nhat Nguyen, 2005. "Soybean Inventory and Forward Curve Dynamics," Management Science, INFORMS, vol. 51(7), pages 1076-1091, July.
    34. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    35. Aguiar-Conraria, LuI´s & Joana Soares, Maria, 2011. "Business cycle synchronization and the Euro: A wavelet analysis," Journal of Macroeconomics, Elsevier, vol. 33(3), pages 477-489, September.
    36. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    37. repec:dau:papers:123456789/1937 is not listed on IDEAS
    38. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    39. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    40. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    41. Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
    42. Stacie Beck, 2001. "Autoregressive conditional heteroscedasticity in commodity spot prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 115-132.
    43. Cheng-Few Lee & Oleg Sokolinskiy, 2015. "R-2GAM stochastic volatility model: flexibility and calibration," Review of Quantitative Finance and Accounting, Springer, vol. 45(3), pages 463-483, October.
    44. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    45. Robert J. Shiller, 2006. "Tools for Financial Innovation: Neoclassical versus Behavioral Finance," The Financial Review, Eastern Finance Association, vol. 41(1), pages 1-8, February.
    46. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    47. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    48. Hylleberg, Svend, 1986. "Seasonality in Regression," Elsevier Monographs, Elsevier, edition 1, number 9780123634559 edited by Shell, Karl.
    49. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    50. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    51. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    52. Shleifer, Andrei, 2000. "Inefficient Markets: An Introduction to Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780198292272.
    53. Francis In & Sangbae Kim & Vijaya Marisetty & Robert Faff, 2008. "Analysing the performance of managed funds using the wavelet multiscaling method," Review of Quantitative Finance and Accounting, Springer, vol. 31(1), pages 55-70, July.
    54. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    55. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
    56. Marc F. Bellemare, 2015. "Rising Food Prices, Food Price Volatility, and Social Unrest," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 1-21.
    57. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    58. Ladislav Kristoufek, 2013. "Fractal Markets Hypothesis and the Global Financial Crisis: Wavelet Power Evidence," Papers 1310.1446, arXiv.org.
    59. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    60. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    61. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, October.
    3. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    4. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    5. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    6. He, Xue-Zhong & Li, Kai & Wang, Chuncheng, 2016. "Volatility clustering: A nonlinear theoretical approach," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 274-297.
    7. Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
    8. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    9. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
    10. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    11. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    15. Federico Bassi & Raquel Ramos & Dany Lang, 2023. "Bet against the trend and cash in profits: An agent-based model of endogenous fluctuations of exchange rates," Journal of Evolutionary Economics, Springer, vol. 33(2), pages 429-472, April.
    16. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2013. "Time-varying beta: a boundedly rational equilibrium approach," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 609-639, July.
    17. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.
    18. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    19. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
    20. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 81(Dec), pages 21-35.

    More about this item

    Keywords

    Olive oil price; Time series analysis; Wavelet transform; Artificial neural network;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:50:y:2018:i:2:d:10.1007_s11156-017-0638-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.