IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4075-d1247860.html
   My bibliography  Save this article

Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model

Author

Listed:
  • Kai Zhang

    (School of Transportation, Southeast University, Nanjing 211189, China
    Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Ministry of Transport, Nanjing 211135, China
    These authors contributed equally to this work.)

  • Zixuan Chu

    (School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215400, China
    These authors contributed equally to this work.)

  • Jiping Xing

    (Xingmin Intelligent Transportation Systems (Group) Co., Ltd., Yantai 265716, China)

  • Honggang Zhang

    (School of Transportation, Southeast University, Nanjing 211189, China
    Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Ministry of Transport, Nanjing 211135, China)

  • Qixiu Cheng

    (School of Transportation, Southeast University, Nanjing 211189, China
    University of Bristol Business School, University of Bristol, Bristol BS8 1PY, UK)

Abstract

Intelligent transportation systems need to realize accurate traffic congestion prediction. The spatio-temporal features of traffic flow are essential to analyze and predict congestion. Our study proposes a data-driven model to predict the traffic congested flow. Firstly, the traffic zone/grid method is used to store the local area roads’ average speed of the vehicles. Second, the discrete snapshot set is proposed to characterize traffic flow’s spatial and temporal features over a continuous period. Third, the evolution of traffic congested flow in various time dimensions (weekly days, weekend days, and one week) is examined by transforming the global urban transportation network into traffic zones. Finally, the data-driven model is constructed to predict urban road traffic congestion by using the extracted spatio-temporal characteristics of traffic zones’ traffic flow, the snapshot set of which serves as inputs for this model. The model adopts the convolutional LSTM network to learn the temporal and local spatial features of traffic flow, while utilizing a convolutional neural network to effectively capture the global spatial features inherent in traffic flow. The numerical experiments are conducted on two cities’ transportation networks, and the results demonstrate that the performance of the proposed model outperforms traditional traffic flow prediction models.

Suggested Citation

  • Kai Zhang & Zixuan Chu & Jiping Xing & Honggang Zhang & Qixiu Cheng, 2023. "Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model," Mathematics, MDPI, vol. 11(19), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4075-:d:1247860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junwei Zhou & Xizhong Qin & Yuanfeng Ding & Haodong Ma, 2023. "Spatial–Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    2. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.
    3. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun, 2022. "Improving the Road and Traffic Control Prediction Based on Fuzzy Logic Approach in Multiple Intersections," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    4. Martin Schönhof & Dirk Helbing, 2007. "Empirical Features of Congested Traffic States and Their Implications for Traffic Modeling," Transportation Science, INFORMS, vol. 41(2), pages 135-166, May.
    5. Lv, Yang & Lv, Zhiqiang & Cheng, Zesheng & Zhu, Zhanqi & Rashidi, Taha Hossein, 2023. "TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    6. Yang, Hanyi & Du, Lili & Zhang, Guohui & Ma, Tianwei, 2023. "A Traffic Flow Dependency and Dynamics based Deep Learning Aided Approach for Network-Wide Traffic Speed Propagation Prediction," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 99-117.
    7. Ming Jiang & Zhiwei Liu, 2023. "Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    8. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ze Dong & Yipeng Zhou & Xiongguan Bao, 2024. "A Short-Term Vessel Traffic Flow Prediction Based on a DBO-LSTM Model," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    2. Roman Ekhlakov & Nikita Andriyanov, 2024. "Multicriteria Assessment Method for Network Structure Congestion Based on Traffic Data Using Advanced Computer Vision," Mathematics, MDPI, vol. 12(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bart Roelofs & Dimitris Ballas & Hinke Haisma & Arjen Edzes, 2022. "Spatial mobility patterns and COVID‐19 incidence: A regional analysis of the second wave in the Netherlands," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S1), pages 21-40, November.
    2. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    3. Choi, T.S. & To, Kiwing & Wong, K.Y. Michael, 2024. "The dynamics of traffic congestion: Data from a freeway Electronic Toll Collection system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    5. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Lei Che & Jiangang Xu & Hong Chen & Dongqi Sun & Bao Wang & Yunuo Zheng & Xuedi Yang & Zhongren Peng, 2022. "Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Liang, Zhiyuan & Tang, Yili & Yu, Jianing & Wang, Yacan, 2024. "A collective incentive strategy to manage ridership rebound and consumer surplus in mass transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    8. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    9. Andrew J. Curtis & Jayakrishnan Ajayakumar & Jacqueline Curtis & Sam Brown, 2022. "Spatial Syndromic Surveillance and COVID-19 in the U.S.: Local Cluster Mapping for Pandemic Preparedness," IJERPH, MDPI, vol. 19(15), pages 1-15, July.
    10. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    11. Munazza Fatima & Kara J. O’Keefe & Wenjia Wei & Sana Arshad & Oliver Gruebner, 2021. "Geospatial Analysis of COVID-19: A Scoping Review," IJERPH, MDPI, vol. 18(5), pages 1-14, February.
    12. Qi Yan & Siqing Shan & Menghan Sun & Feng Zhao & Yangzi Yang & Yinong Li, 2022. "A Social Media Infodemic-Based Prediction Model for the Number of Severe and Critical COVID-19 Patients in the Lockdown Area," IJERPH, MDPI, vol. 19(13), pages 1-16, July.
    13. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    14. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    15. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    16. Yin Huang & Runda Liu & Shumin Huang & Gege Yang & Xiaofan Zhang & Yin Qin & Lisha Mao & Sishi Sheng & Biao Huang, 2021. "Imbalance and breakout in the post-epidemic era: Research into the spatial patterns of freight demand network in six provinces of central China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    17. Fu, Xin & Qiang, Yongjie & Liu, Xuxu & Jiang, Ying & Cui, Zhiwei & Zhang, Deyu & Wang, Jianwei, 2022. "Will multi-industry supply chains' resilience under the impact of COVID-19 pandemic be different? A perspective from China's highway freight transport," Transport Policy, Elsevier, vol. 118(C), pages 165-178.
    18. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    19. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    20. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4075-:d:1247860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.