IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p8109-d854003.html
   My bibliography  Save this article

A Social Media Infodemic-Based Prediction Model for the Number of Severe and Critical COVID-19 Patients in the Lockdown Area

Author

Listed:
  • Qi Yan

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing 100191, China)

  • Siqing Shan

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing 100191, China)

  • Menghan Sun

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing 100191, China)

  • Feng Zhao

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing 100191, China)

  • Yangzi Yang

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing 100191, China)

  • Yinong Li

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation, Beijing 100191, China)

Abstract

Accurately predicting the number of severe and critical COVID-19 patients is critical for the treatment and control of the epidemic. Social media data have gained great popularity and widespread application in various research domains. The viral-related infodemic outbreaks have occurred alongside the COVID-19 outbreak. This paper aims to discover trustworthy sources of social media data to improve the prediction performance of severe and critical COVID-19 patients. The innovation of this paper lies in three aspects. First, it builds an improved prediction model based on machine learning. This model helps predict the number of severe and critical COVID-19 patients on a specific urban or regional scale. The effectiveness of the prediction model, shown as accuracy and satisfactory robustness, is verified by a case study of the lockdown in Hubei Province. Second, it finds the transition path of the impact of social media data for predicting the number of severe and critical COVID-19 patients. Third, this paper provides a promising and powerful model for COVID-19 prevention and control. The prediction model can help medical organizations to realize a prediction of COVID-19 severe and critical patients in multi-stage with lead time in specific areas. This model can guide the Centers for Disease Control and Prevention and other clinic institutions to expand the monitoring channels and research methods concerning COVID-19 by using web-based social media data. The model can also facilitate optimal scheduling of medical resources as well as prevention and control policy formulation.

Suggested Citation

  • Qi Yan & Siqing Shan & Menghan Sun & Feng Zhao & Yangzi Yang & Yinong Li, 2022. "A Social Media Infodemic-Based Prediction Model for the Number of Severe and Critical COVID-19 Patients in the Lockdown Area," IJERPH, MDPI, vol. 19(13), pages 1-16, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:8109-:d:854003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/8109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/8109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Montoya & Carlos Gonzalez, 2019. "A Hidden Markov Model to Detect On-Shelf Out-of-Stocks Using Point-of-Sale Data," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 932-948, October.
    2. Shu He & Huaxia Rui & Andrew B. Whinston, 2018. "Social Media Strategies in Product-Harm Crises," Information Systems Research, INFORMS, vol. 29(2), pages 362-380, June.
    3. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqing Shan & Feng Zhao & Menghan Sun & Yinong Li & Yangzi Yang, 2022. "Suit the Remedy to the Case—The Effectiveness of COVID-19 Nonpharmaceutical Prevention and Control Policies Based on Individual Going-Out Behavior," IJERPH, MDPI, vol. 19(23), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    3. Yin Huang & Runda Liu & Shumin Huang & Gege Yang & Xiaofan Zhang & Yin Qin & Lisha Mao & Sishi Sheng & Biao Huang, 2021. "Imbalance and breakout in the post-epidemic era: Research into the spatial patterns of freight demand network in six provinces of central China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    4. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    5. Mingke Xie & Yang Chen & Luliang Tang, 2022. "Exploring the Impact of Localized COVID-19 Events on Intercity Mobility during the Normalized Prevention and Control Period in China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    6. Pan, Yu & He, Sylvia Y., 2022. "Analyzing COVID-19’s impact on the travel mobility of various social groups in China’s Greater Bay Area via mobile phone big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 263-281.
    7. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Jiansuo Pei & Gaaitzen de Vries & Meng Zhang, 2022. "International trade and Covid‐19: City‐level evidence from China's lockdown policy," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 670-695, June.
    9. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    10. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    11. Ye, Maoxin & Lyu, Zeyu, 2020. "Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China," Social Science & Medicine, Elsevier, vol. 265(C).
    12. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    13. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Yang, Senyan & Ning, Lianju & Jiang, Tingfeng & He, Yingqi, 2021. "Dynamic impacts of COVID-19 pandemic on the regional express logistics: Evidence from China," Transport Policy, Elsevier, vol. 111(C), pages 111-124.
    15. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    16. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    17. Kwang-Sub Lee & Jin Ki Eom, 2024. "Systematic literature review on impacts of COVID-19 pandemic and corresponding measures on mobility," Transportation, Springer, vol. 51(5), pages 1907-1961, October.
    18. Qiushi Chen & Michiko Tsubaki & Yasuhiro Minami & Kazutoshi Fujibayashi & Tetsuro Yumoto & Junzo Kamei & Yuka Yamada & Hidenori Kominato & Hideki Oono & Toshio Naito, 2021. "Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways," IJERPH, MDPI, vol. 18(14), pages 1-32, July.
    19. Dasgupta,Susmita & Wheeler,David R., 2020. "Modeling and Predicting the Spread of Covid-19: Comparative Results for the United States, thePhilippines, and South Africa," Policy Research Working Paper Series 9419, The World Bank.
    20. Li, Huashan & Bapuji, Hari & Talluri, Srinivas & Singh, Prakash J., 2022. "A Cross-disciplinary review of product recall research: A stakeholder-stage framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:8109-:d:854003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.