IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3980-d1243092.html
   My bibliography  Save this article

Slash-Weighted Lindley Distribution: Properties, Inference, and Applications

Author

Listed:
  • Jaime S. Castillo

    (Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

  • Inmaculada Barranco-Chamorro

    (Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Osvaldo Venegas

    (Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile)

  • Héctor W. Gómez

    (Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

Abstract

The slash-weighted Lindley model is introduced due to the need to obtain a model with more kurtosis than the weighted Lindley distribution. Several expressions for the pdf of this model are given. Its cumulative distribution function is expressed in terms of a generalized hypergeometric function and the incomplete gamma function. Moments and maximum likelihood estimation were studied. A simulation study was carried out to illustrate the good performance of the estimates. Finally, two real applications are included.

Suggested Citation

  • Jaime S. Castillo & Inmaculada Barranco-Chamorro & Osvaldo Venegas & Héctor W. Gómez, 2023. "Slash-Weighted Lindley Distribution: Properties, Inference, and Applications," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3980-:d:1243092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Jimmy Reyes & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2020. "Generalized modified slash distribution with applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(8), pages 2025-2048, April.
    3. Neveka Olmos & Héctor Varela & Heleno Bolfarine & Héctor Gómez, 2014. "An extension of the generalized half-normal distribution," Statistical Papers, Springer, vol. 55(4), pages 967-981, November.
    4. William H. Rogers & John W. Tukey, 1972. "Understanding some long‐tailed symmetrical distributions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 26(3), pages 211-226, September.
    5. del Castillo, J.M., 2016. "Slash distributions of the sum of independent logistic random variables," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 111-118.
    6. Gómez, Héctor W. & Quintana, Fernando A. & Torres, Francisco J., 2007. "A new family of slash-distributions with elliptical contours," Statistics & Probability Letters, Elsevier, vol. 77(7), pages 717-725, April.
    7. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    8. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimmy Reyes & Yuri A. Iriarte & Pedro Jodrá & Héctor W. Gómez, 2019. "The Slash Lindley-Weibull Distribution," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 235-251, March.
    2. Talha Arslan, 2021. "An ? -Monotone Generalized Log-Moyal Distribution with Applications to Environmental Data," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    3. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    4. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    5. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 597-620, December.
    6. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    7. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    8. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    9. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    10. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    11. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    12. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    13. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    14. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
    15. Kantar, Yeliz Mert & Usta, Ilhan & Arik, Ibrahim & Yenilmez, Ismail, 2018. "Wind speed analysis using the Extended Generalized Lindley Distribution," Renewable Energy, Elsevier, vol. 118(C), pages 1024-1030.
    16. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    17. E.I., Abdul Sathar & K.V., Viswakala, 2019. "Non-parametric estimation of Kullback–Leibler discrimination information based on censored data," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    18. Rama Shanker & Kamlesh Kumar Shukla, 2017. "Zero-Truncated Poisson-Garima Distribution and its Applications," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(1), pages 14-19, September.
    19. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    20. Ghitany, M.E. & Alqallaf, F. & Al-Mutairi, D.K. & Husain, H.A., 2011. "A two-parameter weighted Lindley distribution and its applications to survival data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(6), pages 1190-1201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3980-:d:1243092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.