IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3767-d1231349.html
   My bibliography  Save this article

Product Selection Considering Multiple Consumers’ Expectations and Online Reviews: A Method Based on Intuitionistic Fuzzy Soft Sets and TODIM

Author

Listed:
  • Pingping Cao

    (Department of Basic Teaching and Research, Criminal Investigation Police University of China, Shenyang 110854, China)

  • Jin Zheng

    (Department of Management Science and Engineering, Business School, Liaoning University, Shenyang 110136, China)

  • Mingyang Li

    (Department of Management Science and Engineering, Business School, Liaoning University, Shenyang 110136, China)

Abstract

Large amounts of online reviews from e-commerce sites and social media platforms can help potential consumers to better understand products and play an important part in assisting potential consumers in making purchase decisions. Moreover, while multiple consumers purchase the same product, the index parameters of the product that are of concern among them are usually different, i.e., they have different expectations for the product. Therefore, the question of how to effectively analyze online product reviews and consider multiple consumers’ expectations to select products is an important issue that needs to be addressed. The objective of this study is to propose a product selection method based on intuitionistic fuzzy soft sets and TODIM. Firstly, the online reviews are extracted by the web crawler and are pretreated. Next, the sentiment orientations of each online review concerning product index parameters are recognized using the dictionary-based sentiment analysis algorithm. Then, the evaluation values of sentiment orientations for product index parameters are firstly expressed by intuitionistic fuzzy numbers and are then transformed into intuitionistic fuzzy soft sets. Further, the alternative product set is obtained according to the uni-int decision function and multiple consumers’ expectations, and we then rank the alternative products using the TODIM method. Finally, a case study is provided to illustrate the validity and feasibility of the proposed method.

Suggested Citation

  • Pingping Cao & Jin Zheng & Mingyang Li, 2023. "Product Selection Considering Multiple Consumers’ Expectations and Online Reviews: A Method Based on Intuitionistic Fuzzy Soft Sets and TODIM," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3767-:d:1231349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng Zhao & Xinyuan Shen & Huchang Liao & Mingyao Cai, 2022. "Selecting products through text reviews: An MCDM method incorporating personalized heuristic judgments in the prospect theory," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 21-44, March.
    2. Zhenyu Zhang & Jie Lin & Huirong Zhang & Shuangsheng Wu & Dapei Jiang, 2020. "Hybrid TODIM Method for Law Enforcement Possibility Evaluation of Judgment Debtor," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
    3. Jian-Wu Bi & Yang Liu & Zhi-Ping Fan & Erik Cambria, 2019. "Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 7068-7088, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenshuai Wu, 2024. "Probabilistic Linguistic TODIM Method with Probabilistic Linguistic Entropy Weight and Hamming Distance for Teaching Reform Plan Evaluation," Mathematics, MDPI, vol. 12(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Nasiri, Mohammad Sadegh & Shokouhyar, Sajjad, 2021. "Actual consumers' response to purchase refurbished smartphones: Exploring perceived value from product reviews in online retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    3. Maria Rostasova & Anna Padourova & Tatiana Corejova, 2020. "KANO model as a tool of effective customer satisfaction diagnostics of postal services," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 811-828, December.
    4. Zhang, Dianfeng & Shen, Zifan & Li, Yanlai, 2023. "Requirement analysis and service optimization of multiple category fresh products in online retailing using importance-Kano analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    5. Ming-Tsang Lu & Hsi-Peng Lu & Chiao-Shan Chen, 2022. "Exploring the Key Priority Development Projects of Smart Transportation for Sustainability: Using Kano Model," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    6. Lionel Nicod & Élodie Mallor & Sylvie Llosa, 2023. "L’influence de l’aide à participer en magasin sur la satisfaction client : une approche par le modèle tétraclasse," Post-Print hal-04311121, HAL.
    7. Wen-Kuo Chen & Dalianus Riantama & Long-Sheng Chen, 2020. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    8. Xiaohong Chen & Hui Wang & Xihua Li, 2024. "Doctor recommendation under probabilistic linguistic environment considering patient’s risk preference," Annals of Operations Research, Springer, vol. 341(1), pages 555-581, October.
    9. Junegak Joung & Ki-Hun Kim & Kwangsoo Kim, 2021. "Data-Driven Approach to Dual Service Failure Monitoring From Negative Online Reviews: Managerial Perspective," SAGE Open, , vol. 11(1), pages 21582440209, January.
    10. Yuan Yuan & Tianhui You & Tian’ai Xu & Xun Yu, 2022. "Customer-Oriented Strategic Planning for Hotel Competitiveness Improvement Based on Online Reviews," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    11. Qiuying Chen & Shangyue Xu & Ronghui Liu & Qingquan Jiang, 2023. "Exploring the Discrepancy between Projected and Perceived Destination Images: A Cross-Cultural and Sustainable Analysis Using LDA Modeling," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    12. Yanlai Li & Zifan Shen & Cuiming Zhao & Kwai-Sang Chin & Xuwei Lang, 2024. "Understanding Customer Opinion Change on Fresh Food E-Commerce Products and Services—Comparative Analysis before and during COVID-19 Pandemic," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    13. Zibarzani, Masoumeh & Abumalloh, Rabab Ali & Nilashi, Mehrbakhsh & Samad, Sarminah & Alghamdi, O.A. & Nayer, Fatima Khan & Ismail, Muhammed Yousoof & Mohd, Saidatulakmal & Mohammed Akib, Noor Adelyna, 2022. "Customer satisfaction with Restaurants Service Quality during COVID-19 outbreak: A two-stage methodology," Technology in Society, Elsevier, vol. 70(C).
    14. Wu, Jie & Zhao, Narisa & Yang, Tong, 2024. "Wisdom of crowds: SWOT analysis based on hybrid text mining methods using online reviews," Journal of Business Research, Elsevier, vol. 171(C).
    15. Zhang, Chenxi & Xu, Zeshui, 2024. "Gaining insights for service improvement through unstructured text from online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    16. Jia-Li Chang & Hui Li & Jian Wu, 2023. "How Tourist Group Books Hotels Meeting the Majority Affective Expectations: A Group Selection Frame with Kansei Text Mining and Consensus Coordinating," Group Decision and Negotiation, Springer, vol. 32(2), pages 327-358, April.
    17. Zihayat, Morteza & Ayanso, Anteneh & Davoudi, Heidar & Kargar, Mehdi & Mengesha, Nigussie, 2021. "Leveraging non-respondent data in customer satisfaction modeling," Journal of Business Research, Elsevier, vol. 135(C), pages 112-126.
    18. Shugang Li & Fang Liu & Yuqi Zhang & Boyi Zhu & He Zhu & Zhaoxu Yu, 2022. "Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review," Mathematics, MDPI, vol. 10(19), pages 1-26, September.
    19. Zhang, Min & Sun, Lin & Wang, G. Alan & Li, Yuzhuo & He, Shuguang, 2022. "Using neutral sentiment reviews to improve customer requirement identification and product design strategies," International Journal of Production Economics, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3767-:d:1231349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.