IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3210-d1199647.html
   My bibliography  Save this article

A Novel Hybrid Algorithm Based on Jellyfish Search and Particle Swarm Optimization

Author

Listed:
  • Husham Muayad Nayyef

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Ahmad Asrul Ibrahim

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Muhammad Ammirrul Atiqi Mohd Zainuri

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohd Asyraf Zulkifley

    (Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Hussain Shareef

    (Department of Electrical and Communication Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates)

Abstract

Metaheuristic optimization is considered one of the most efficient and powerful techniques of recent decades as it can deal effectively with complex optimization problems. The performance of the optimization technique relies on two main components: exploration and exploitation. Unfortunately, the performance is limited by a weakness in one of the components. This study aims to tackle the issue with the exploration of the existing jellyfish search optimizer (JSO) by introducing a hybrid jellyfish search and particle swarm optimization (HJSPSO). HJSPSO is mainly based on a JSO structure, but the following ocean current movement operator is replaced with PSO to benefit from its exploration capability. The search process alternates between PSO and JSO operators through a time control mechanism. Furthermore, nonlinear and time-varying inertia weight, cognitive, and social coefficients are added to the PSO and JSO operators to balance between exploration and exploitation. Sixty benchmark test functions, including 10 CEC-C06 2019 large-scale benchmark test functions with various dimensions, are used to showcase the optimization performance. Then, the traveling salesman problem (TSP) is used to validate the performance of HJSPSO for a nonconvex optimization problem. Results demonstrate that compared to existing JSO and PSO techniques, HJSPSO contributes in terms of exploration and exploitation improvements, where it outperforms other well-known metaheuristic optimization techniques that include a hybrid algorithm. In this case, HJSPSO secures the first rank in classical and large-scale benchmark test functions by achieving the highest hit rates of 64% and 30%, respectively. Moreover, HJSPSO demonstrates good applicability in solving an exemplar TSP after attaining the shortest distance with the lowest mean and best fitness at 37.87 and 36.12, respectively. Overall, HJSPSO shows superior performance in solving most benchmark test functions compared to other optimization techniques, including JSO and PSO. As a conclusion, HJSPSO is a robust technique that can be applied to solve most optimization problems with a promising solution.

Suggested Citation

  • Husham Muayad Nayyef & Ahmad Asrul Ibrahim & Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Asyraf Zulkifley & Hussain Shareef, 2023. "A Novel Hybrid Algorithm Based on Jellyfish Search and Particle Swarm Optimization," Mathematics, MDPI, vol. 11(14), pages 1-29, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3210-:d:1199647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    2. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    3. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    4. Chou, Jui-Sheng & Truong, Dinh-Nhat & Kuo, Ching-Chiun, 2021. "Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chengyu & Rezgui, Yacine & Luo, Zhiwen & Jiang, Ben & Zhao, Tianyi, 2024. "Simultaneous community energy supply-demand optimization by microgrid operation scheduling optimization and occupant-oriented flexible energy-use regulation," Applied Energy, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Sameh S. Askar & Mohamed Abouhawwash, 2021. "Efficient Ranking-Based Whale Optimizer for Parameter Extraction of Three-Diode Photovoltaic Model: Analysis and Validations," Energies, MDPI, vol. 14(13), pages 1-20, June.
    2. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Gang Hu & Jiao Wang & Min Li & Abdelazim G. Hussien & Muhammad Abbas, 2023. "EJS: Multi-Strategy Enhanced Jellyfish Search Algorithm for Engineering Applications," Mathematics, MDPI, vol. 11(4), pages 1-32, February.
    4. Rafa Elshara & Aybaba Hançerlioğullari & Javad Rahebi & Jose Manuel Lopez-Guede, 2024. "PV Cells and Modules Parameter Estimation Using Coati Optimization Algorithm," Energies, MDPI, vol. 17(7), pages 1-26, April.
    5. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    6. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    7. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    8. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    9. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    10. Jaime Pilatásig & Diego Carrión & Manuel Jaramillo, 2022. "Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    11. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Hesham Alhumade & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Increasing Output Power of a Microfluidic Fuel Cell Using Fuzzy Modeling and Jellyfish Search Optimization," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    14. Çağlayan-Akay, Ebru & Topal, Kadriye Hilal, 2024. "Forecasting Turkish electricity consumption: A critical analysis of single and hybrid models," Energy, Elsevier, vol. 305(C).
    15. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    16. Liqiong Huang & Yuanyuan Wang & Yuxuan Guo & Gang Hu, 2022. "An Improved Reptile Search Algorithm Based on Lévy Flight and Interactive Crossover Strategy to Engineering Application," Mathematics, MDPI, vol. 10(13), pages 1-39, July.
    17. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    18. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    19. Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
    20. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3210-:d:1199647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.