IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1716-d1369540.html
   My bibliography  Save this article

PV Cells and Modules Parameter Estimation Using Coati Optimization Algorithm

Author

Listed:
  • Rafa Elshara

    (Department of Material Science and Engineering, University of Kastamonua, Kastamonu 37150, Turkey)

  • Aybaba Hançerlioğullari

    (Department of Physics, University of Kastamonu, Kastamonu 37150, Turkey)

  • Javad Rahebi

    (Department of Software Engineering, Istanbul Topkapi University, Istanbul 34087, Turkey)

  • Jose Manuel Lopez-Guede

    (Department of Systems and Automatic Control, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), C/Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain)

Abstract

In recent times, there have been notable advancements in solar energy and other renewable sources, underscoring their vital contribution to environmental conservation. Solar cells play a crucial role in converting sunlight into electricity, providing a sustainable energy alternative. Despite their significance, effectively optimizing photovoltaic system parameters remains a challenge. To tackle this issue, this study introduces a new optimization approach based on the coati optimization algorithm (COA), which integrates opposition-based learning and chaos theory. Unlike existing methods, the COA aims to maximize power output by integrating solar system parameters efficiently. This strategy represents a significant improvement over traditional algorithms, as evidenced by experimental findings demonstrating improved parameter setting accuracy and a substantial increase in the Friedman rating. As global energy demand continues to rise due to industrial expansion and population growth, the importance of sustainable energy sources becomes increasingly evident. Solar energy, characterized by its renewable nature, presents a promising solution to combat environmental pollution and lessen dependence on fossil fuels. This research emphasizes the critical role of COA-based optimization in advancing solar energy utilization and underscores the necessity for ongoing development in this field.

Suggested Citation

  • Rafa Elshara & Aybaba Hançerlioğullari & Javad Rahebi & Jose Manuel Lopez-Guede, 2024. "PV Cells and Modules Parameter Estimation Using Coati Optimization Algorithm," Energies, MDPI, vol. 17(7), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1716-:d:1369540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Sameh S. Askar & Mohamed Abouhawwash, 2021. "Efficient Ranking-Based Whale Optimizer for Parameter Extraction of Three-Diode Photovoltaic Model: Analysis and Validations," Energies, MDPI, vol. 14(13), pages 1-20, June.
    2. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    4. Gang Hu & Jiao Wang & Min Li & Abdelazim G. Hussien & Muhammad Abbas, 2023. "EJS: Multi-Strategy Enhanced Jellyfish Search Algorithm for Engineering Applications," Mathematics, MDPI, vol. 11(4), pages 1-32, February.
    5. Afroz Alam & Preeti Verma & Mohd Tariq & Adil Sarwar & Basem Alamri & Noore Zahra & Shabana Urooj, 2021. "Jellyfish Search Optimization Algorithm for MPP Tracking of PV System," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    6. Rizk-Allah, Rizk M. & El-Fergany, Attia A., 2021. "Emended heap-based optimizer for characterizing performance of industrial solar generating units using triple-diode model," Energy, Elsevier, vol. 237(C).
    7. Husham Muayad Nayyef & Ahmad Asrul Ibrahim & Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Asyraf Zulkifley & Hussain Shareef, 2023. "A Novel Hybrid Algorithm Based on Jellyfish Search and Particle Swarm Optimization," Mathematics, MDPI, vol. 11(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1716-:d:1369540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.