IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2640-d1167870.html
   My bibliography  Save this article

A Model for a Vacation Queuing Policy Considering Server’s Deterioration and Recovery

Author

Listed:
  • Gabi Hanukov

    (Department of Industrial Engineering and Management, Ariel University, Kiriat Hamada, 3, Ariel 40700, Israel)

  • Shraga Shoval

    (Department of Industrial Engineering and Management, Ariel University, Kiriat Hamada, 3, Ariel 40700, Israel)

Abstract

In this paper, we present a vacation queue model in which the service rate of the server deteriorates during the service period (e.g., due to the fatigue of a human server or the wear and ageing of machinery) and recovers during the vacation period (e.g., following a recuperation period for a human sever or the servicing of a machine). During the recuperation period, the main server is replaced with a temporary server with inferior capabilities. Using the multi-dimensional Markov process, we analyze the effects of different vacation policies on the target function and focus on the scheduling of the vacation period as a function of the deterioration and recovery rates. It is shown that the use of vacations to allow the server to rest and regain efficiency has a strong and valuable effect on the mean customer waiting time, to the extent that switching servers may be beneficial for the system, even when implemented at a point in time when the main server’s service rate is still much higher than that of the temporary server.

Suggested Citation

  • Gabi Hanukov & Shraga Shoval, 2023. "A Model for a Vacation Queuing Policy Considering Server’s Deterioration and Recovery," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2640-:d:1167870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Gang & Wu, Wenqing & Zhang, Yuanyuan, 2018. "Analysis of a multi-component system with failure dependency, N-policy and vacations," Operations Research Perspectives, Elsevier, vol. 5(C), pages 191-198.
    2. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2012. "Integrating noncyclical preventive maintenance scheduling and production planning for a single machine," International Journal of Production Economics, Elsevier, vol. 136(2), pages 344-351.
    3. Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2018. "Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures," International Journal of Production Economics, Elsevier, vol. 195(C), pages 210-226.
    5. Kut C. So, 1992. "Optimality of control limit policies in replacement models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 685-697, August.
    6. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.
    7. David L. Kaufman & Mark E. Lewis, 2007. "Machine maintenance with workload considerations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 750-766, October.
    8. Gabi Hanukov & Shoshana Anily & Uri Yechiali, 2020. "Ticket queues with regular and strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 145-171, June.
    9. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. P. Niranjan & S. Devi Latha & Miroslav Mahdal & Krishnasamy Karthik, 2023. "Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation," Mathematics, MDPI, vol. 12(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    5. Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    6. Li, Mingjia & Hu, Linmin & Wu, Shaomin & Zhao, Bing & Wang, Yan, 2023. "Reliability assessment for consecutive-k-out-of-n: F retrial systems under Poisson shocks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    8. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Fahimeh Shamsaei & Mathieu Vyve, 2017. "Solving integrated production and condition-based maintenance planning problems by MIP modeling," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 184-202, June.
    10. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Optimal preventive replacement policy for homogeneous cold standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Gao, Shan, 2023. "Reliability analysis and optimization for a redundant system with dependent failures and variable repair rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 637-659.
    13. Ait-El-Cadi, Abdessamad & Gharbi, Ali & Dhouib, Karem & Artiba, Abdelhakim, 2021. "Integrated production, maintenance and quality control policy for unreliable manufacturing systems under dynamic inspection," International Journal of Production Economics, Elsevier, vol. 236(C).
    14. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimal shock-driven switching strategies with elements reuse in heterogeneous warm-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    15. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimizing preventive replacement schedule in standby systems with time consuming task transfers," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Dhahri, Akrem & Gharbi, Ali & Ouhimmou, Mustapha, 2022. "Integrated production-delivery control policy for an unreliable manufacturing system and multiple retailers," International Journal of Production Economics, Elsevier, vol. 245(C).
    17. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Gabi Hanukov & Michael Hassoun & Oren Musicant, 2021. "On the Benefits of Providing Timely Information in Ticket Queues with Balking and Calling Times," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    19. Gao, Yicong & Feng, Yixiong & Zhang, Zixian & Tan, Jianrong, 2015. "An optimal dynamic interval preventive maintenance scheduling for series systems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 19-30.
    20. Małgorzata Jasiulewicz-Kaczmarek & Katarzyna Antosz & Ryszard Wyczółkowski & Dariusz Mazurkiewicz & Bo Sun & Cheng Qian & Yi Ren, 2021. "Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing," Energies, MDPI, vol. 14(5), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2640-:d:1167870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.