Optimizing preventive replacement schedule in standby systems with time consuming task transfers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2020.107227
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
- Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
- Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
- Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
- Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
- Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
- Nourelfath, Mustapha & Châtelet, Eric, 2012. "Integrating production, inventory and maintenance planning for a parallel system with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 59-66.
- Huang, Yeu-Shiang & Gau, Wei-Yo & Ho, Jyh-Wen, 2015. "Cost analysis of two-dimensional warranty for products with periodic preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 51-58.
- Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
- Ma, Xiaoyang & Liu, Bin & Yang, Li & Peng, Rui & Zhang, Xiaodong, 2020. "Reliability analysis and condition-based maintenance optimization for a warm standby cooling system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
- Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
- Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2015. "Probabilistic common cause failures in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 53-60.
- Lin, Jing & Pulido, Julio & Asplund, Matthias, 2015. "Reliability analysis for preventive maintenance based on classical and Bayesian semi-parametric degradation approaches using locomotive wheel-sets as a case study," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 143-156.
- Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Chaonan & Wang, Xiaolei & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2021. "A Fast and Accurate Reliability Approximation Method for Heterogeneous Cold Standby Sparing Systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Fan, Dongming & Zhang, Aibo & Feng, Qiang & Cai, Baoping & Liu, Yiliu & Ren, Yi, 2021. "Group maintenance optimization of subsea Xmas trees with stochastic dependency," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Juan Eloy Ruiz-Castro, 2021. "Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units," Mathematics, MDPI, vol. 9(8), pages 1-29, April.
- Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Joint optimal mission aborting and replacement and maintenance scheduling in dual-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Influence of storage on mission success probability of m-out-of-n standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Heterogeneous 1-out-of-n standby systems with limited unit operation time," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Minimizing mission cost for production system with unreliable storage," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Zhou, Yu & Kou, Gang & Guo, Zhen-Zhu & Xiao, Hui, 2023. "Availability analysis of shared bikes using abnormal trip data," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimal multiple replacement and maintenance scheduling in two-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Golmohammadi, Elnaz & Ardakan, Mostafa Abouei, 2022. "Reliability optimization problem with the mixed strategy, degrading components, and a periodic inspection and maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimizing the maximum filling level of perfect storage in system with imperfect production unit," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Loading policy minimizing cumulative unsupplied demand of production system with storage," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimal shock-driven switching strategies with elements reuse in heterogeneous warm-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
- Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Optimal preventive replacement policy for homogeneous cold standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimal shock-driven switching strategies with elements reuse in heterogeneous warm-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimization of cyclic preventive replacement in homogeneous warm-standby system with reusable elements exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Wang, Chaonan & Wang, Xiaolei & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2021. "A Fast and Accurate Reliability Approximation Method for Heterogeneous Cold Standby Sparing Systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
- Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
- Azadeh, A. & Asadzadeh, S.M. & Salehi, N. & Firoozi, M., 2015. "Condition-based maintenance effectiveness for series–parallel power generation system—A combined Markovian simulation model," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 357-368.
More about this item
Keywords
Preventive replacement; Task transfer; Mission success probability; Warm standby; Event transition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307274. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.