IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p43-d1011769.html
   My bibliography  Save this article

Numerical Method for a Perturbed Risk Model with Proportional Investment

Author

Listed:
  • Chunwei Wang

    (School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
    These authors contributed equally to this work.)

  • Naidan Deng

    (School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
    These authors contributed equally to this work.)

  • Silian Shen

    (School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China)

Abstract

In this paper, we study the perturbed risk model with a threshold dividend strategy and proportional investment. The insurance companies are allowed to invest their surplus in a financial market consisting of a risk-free asset and a risky asset in fixed proportions; the risky assets are modeled by the jump-diffusion process. Firstly, using the theory of the stochastic process and stochastic analysis, we obtained the integro-differential equations satisfied by the expected discounted dividend payments and the discounted penalty function. Secondly, we obtained the numerical approximate solutions of the integro-differential equations through the sinc method, since the analytical solutions of them are not easy to obtain, and we found that the error is within a manageable range. Finally, we considered some numerical examples where the claim sizes follow an exponential distribution, a mixture of two exponential distributions or the lognormal distribution in detail, and explored how perturbations and proportional investment affect dividends and ruin probability. Moreover, sensitive analysis showed that the proportion of the risky investment, the diffusion coefficient, the distribution of the claims and the positive jump in the risky assets investment all have explicit impacts on dividends and ruin probability.

Suggested Citation

  • Chunwei Wang & Naidan Deng & Silian Shen, 2022. "Numerical Method for a Perturbed Risk Model with Proportional Investment," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:43-:d:1011769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xu & Xiao, Ting & Yang, Xiang-qun, 2014. "A Markov-modulated jump-diffusion risk model with randomized observation periods and threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 76-83.
    2. Zhang, Zhimin, 2017. "Approximating The Density Of The Time To Ruin Via Fourier-Cosine Series Expansion," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 169-198, January.
    3. Priscilla Serwaa Nkyira Gambrah & Traian Adrian Pirvu, 2014. "Risk Measures and Portfolio Optimization," JRFM, MDPI, vol. 7(3), pages 1-17, September.
    4. Wan, Ning, 2007. "Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 509-523, May.
    5. Jiaqi Zhu & Shenghong Li, 2020. "Time-Consistent Investment and Reinsurance Strategies for Mean-Variance Insurers under Stochastic Interest Rate and Stochastic Volatility," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    6. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    7. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    8. Yujuan Huang & Jing Li & Hengyu Liu & Wenguang Yu, 2021. "Estimating Ruin Probability in an Insurance Risk Model with Stochastic Premium Income Based on the CFS Method," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
    9. Vierkötter, Matthias & Schmidli, Hanspeter, 2017. "On optimal dividends with exponential and linear penalty payments," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 265-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaen Xu & Chunwei Wang & Naidan Deng & Shujing Wang, 2023. "Numerical Method for a Risk Model with Two-Sided Jumps and Proportional Investment," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    2. Bo, Lijun & Song, Renming & Tang, Dan & Wang, Yongjin & Yang, Xuewei, 2012. "Lévy risk model with two-sided jumps and a barrier dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 280-291.
    3. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    4. Yunyun Wang & Wenguang Yu & Yujuan Huang & Xinliang Yu & Hongli Fan, 2019. "Estimating the Expected Discounted Penalty Function in a Compound Poisson Insurance Risk Model with Mixed Premium Income," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
    5. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    6. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    7. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    8. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    9. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    10. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    11. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    12. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    13. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    14. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    15. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    16. Guo, Fenglong, 2022. "Ruin probability of a continuous-time model with dependence between insurance and financial risks caused by systematic factors," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    17. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    18. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    19. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    20. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:43-:d:1011769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.