IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p982-d544649.html
   My bibliography  Save this article

Estimating Ruin Probability in an Insurance Risk Model with Stochastic Premium Income Based on the CFS Method

Author

Listed:
  • Yujuan Huang

    (School of Science, Shandong Jiaotong University, Jinan 250357, China)

  • Jing Li

    (Department of Statistics and Actuarial Science, Chongqing University, Chongqing 401331, China)

  • Hengyu Liu

    (Thurgood Marshall College, University of San Diego, San Diego, CA 92092, USA)

  • Wenguang Yu

    (School of Insurance, Shandong University of Finance and Economics, Jinan 250014, China)

Abstract

This paper considers the estimation of ruin probability in an insurance risk model with stochastic premium income. We first show that the ruin probability can be approximated by the complex Fourier series (CFS) expansion method. Then, we construct a nonparametric estimator of the ruin probability and analyze its convergence. Numerical examples are also provided to show the efficiency of our method when the sample size is finite.

Suggested Citation

  • Yujuan Huang & Jing Li & Hengyu Liu & Wenguang Yu, 2021. "Estimating Ruin Probability in an Insurance Risk Model with Stochastic Premium Income Based on the CFS Method," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:982-:d:544649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    4. Wang, Yayun & Zhang, Zhimin & Yu, Wenguang, 2021. "Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    5. Yang, Yang & Su, Wen & Zhang, Zhimin, 2019. "Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 147-155.
    6. Li, Jinzhu, 2017. "A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 49-55.
    7. Wen Su & Wenguang Yu, 2020. "Asymptotically Normal Estimators of the Gerber-Shiu Function in Classical Insurance Risk Model," Mathematics, MDPI, vol. 8(10), pages 1-11, September.
    8. Mitric, Ilie-Radu & Badescu, Andrei L. & Stanford, David A., 2012. "On the absolute ruin problem in a Sparre Andersen risk model with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 167-178.
    9. Stéphane Loisel, 2011. "Explicit ruin formulas for dependent risks," Post-Print hal-00600093, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunwei Wang & Naidan Deng & Silian Shen, 2022. "Numerical Method for a Perturbed Risk Model with Proportional Investment," Mathematics, MDPI, vol. 11(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang Hu & Ya Huang & Yingchun Deng, 2023. "Estimating the Gerber–Shiu Function in the Two-Sided Jumps Risk Model by Laguerre Series Expansion," Mathematics, MDPI, vol. 11(9), pages 1-30, April.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
    4. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    5. Yuan Gao & Honglong You, 2021. "The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α -Stable Lévy Subordinator," Mathematics, MDPI, vol. 9(21), pages 1-9, October.
    6. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    7. Caroline Hillairet & Ying Jiao, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus," Working Papers 2017-75, Center for Research in Economics and Statistics.
    8. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    9. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    10. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    11. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    12. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    13. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    14. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    15. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    16. Dickson, David C.M., 2016. "A note on some joint distribution functions involving the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 120-124.
    17. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    18. Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
    19. Youri Raaijmakers & Hansjörg Albrecher & Onno Boxma, 2019. "The Single Server Queue with Mixing Dependencies," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1023-1044, December.
    20. Michel Dacorogna & Laila Elbahtouri & Marie Kratz, 2015. "Explicit diversification benefit for dependent risks," Working Papers hal-01256869, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:982-:d:544649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.