IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v7y2014i3p113-129d40516.html
   My bibliography  Save this article

Risk Measures and Portfolio Optimization

Author

Listed:
  • Priscilla Serwaa Nkyira Gambrah

    (Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada)

  • Traian Adrian Pirvu

    (Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada)

Abstract

In this paper we investigate portfolio optimization under Value at Risk, Average Value at Risk and Limited Expected Loss constraints in a continuous time framework, where stocks follow a geometric Brownian motion. Analytic expressions for Value at Risk, Average Value at Risk and Limited Expected Loss are derived. We solve the problem of minimizing risk measures applied to portfolios. Moreover, the portfolio’s expected return is maximized subject to the aforementioned risk measures. We illustrate the effect of these risk measures on portfolio optimization by using numerical experiments.

Suggested Citation

  • Priscilla Serwaa Nkyira Gambrah & Traian Adrian Pirvu, 2014. "Risk Measures and Portfolio Optimization," JRFM, MDPI, vol. 7(3), pages 1-17, September.
  • Handle: RePEc:gam:jjrfmx:v:7:y:2014:i:3:p:113-129:d:40516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/7/3/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/7/3/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Traian A. Pirvu, 2007. "Portfolio optimization under the Value-at-Risk constraint," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 125-136.
    2. Gordana Dmitrašinović-Vidović & Antony Ware, 2006. "Asymptotic behaviour of mean-quantile efficient portfolios," Finance and Stochastics, Springer, vol. 10(4), pages 529-551, December.
    3. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    4. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    5. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    6. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    7. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    8. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    9. Susanne Emmer & Claudia Klüppelberg & Ralf Korn, 2001. "Optimal Portfolios with Bounded Capital at Risk," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 365-384, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naomi Pandiangan & Sukono Sukono & Endang Soeryana Hasbullah, 2021. "Quadratic Investment Portfolio Based on Value-at-risk with Risk-Free Assets: For Stocks of the Mining and Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 175-184.
    2. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2014. "Risk minimization and portfolio diversification," Papers 1411.6657, arXiv.org, revised Dec 2014.
    3. S. Geissel & H. Graf & J. Herbinger & F. T. Seifried, 2022. "Portfolio optimization with optimal expected utility risk measures," Annals of Operations Research, Springer, vol. 309(1), pages 59-77, February.
    4. Feghhi Kashani , Mohammad & Mohebimajd , Ahmadreza, 2021. "Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 16(2), pages 253-282, June.
    5. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2016. "Risk minimization and portfolio diversification," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1325-1332, September.
    6. Chunwei Wang & Naidan Deng & Silian Shen, 2022. "Numerical Method for a Perturbed Risk Model with Proportional Investment," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
    7. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    8. Theofanis Petropoulos & Konstantinos Liapis & Eleftherios Thalassinos, 2023. "Optimal Structure of Real Estate Portfolio Using EVA: A Stochastic Markowitz Model Using Data from Greek Real Estate Market," Risks, MDPI, vol. 11(2), pages 1-19, February.
    9. H. Fink & S. Geissel & J. Herbinger & F. T. Seifried, 2019. "Portfolio Optimization with Optimal Expected Utility Risk Measures," Working Paper Series 2019-07, University of Trier, Research Group Quantitative Finance and Risk Analysis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    2. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    3. Thai Nguyen, 2016. "Optimal investment and consumption with downside risk constraint in jump-diffusion models," Papers 1604.05584, arXiv.org.
    4. Das, Sanjiv R. & Statman, Meir, 2013. "Options and structured products in behavioral portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 137-153.
    5. Xianzhe Chen & Weidong Tian, 2014. "Optimal portfolio choice and consistent performance," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 453-474, October.
    6. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2014. "Risk minimization and portfolio diversification," Papers 1411.6657, arXiv.org, revised Dec 2014.
    7. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2016. "Risk minimization and portfolio diversification," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1325-1332, September.
    8. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    9. Fulbert, Tchana Tchana & Georges, Tsafack, 2013. "The Implications of VaR and Short-Selling Restrictions on the Portfolio Manager Performance," MPRA Paper 43797, University Library of Munich, Germany.
    10. Santiago Moreno-Bromberg & Traian Pirvu & Anthony R'eveillac, 2011. "CRRA Utility Maximization under Risk Constraints," Papers 1106.1702, arXiv.org, revised Mar 2012.
    11. Redeker Imke & Wunderlich Ralf, 2018. "Portfolio optimization under dynamic risk constraints: Continuous vs. discrete time trading," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 1-21, January.
    12. Traian A. Pirvu & Gordan Žitković, 2009. "Maximizing The Growth Rate Under Risk Constraints," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 423-455, July.
    13. Moreno-Bromberg, Santiago & Pirvu, Traian A. & Réveillac, Anthony, 2011. "CRRA utility maximization under risk constraints," SFB 649 Discussion Papers 2011-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    15. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    16. Felix Fie{ss}inger & Mitja Stadje, 2024. "Mean-Variance Optimization for Participating Life Insurance Contracts," Papers 2407.11761, arXiv.org, revised Dec 2024.
    17. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    18. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    19. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    20. Sun, Yufei & Aw, Grace & Teo, Kok Lay & Zhu, Yanjian & Wang, Xiangyu, 2016. "Multi-period portfolio optimization under probabilistic risk measure," Finance Research Letters, Elsevier, vol. 18(C), pages 60-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:7:y:2014:i:3:p:113-129:d:40516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.