IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v47y2017i01p169-198_00.html
   My bibliography  Save this article

Approximating The Density Of The Time To Ruin Via Fourier-Cosine Series Expansion

Author

Listed:
  • Zhang, Zhimin

Abstract

In this paper, the density of the time to ruin is studied in the context of the classical compound Poisson risk model. Both one-dimensional and two-dimensional Fourier-cosine series expansions are used to approximate the density of the time to ruin, and the approximation errors are also obtained. Some numerical examples are also presented to show that the proposed method is very efficient.

Suggested Citation

  • Zhang, Zhimin, 2017. "Approximating The Density Of The Time To Ruin Via Fourier-Cosine Series Expansion," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 169-198, January.
  • Handle: RePEc:cup:astinb:v:47:y:2017:i:01:p:169-198_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036116000271/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    2. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    3. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.
    4. Yunyun Wang & Wenguang Yu & Yujuan Huang & Xinliang Yu & Hongli Fan, 2019. "Estimating the Expected Discounted Penalty Function in a Compound Poisson Insurance Risk Model with Mixed Premium Income," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
    5. Chunwei Wang & Naidan Deng & Silian Shen, 2022. "Numerical Method for a Perturbed Risk Model with Proportional Investment," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
    6. Xie, Jiayi & Zhang, Zhimin, 2021. "Finite-time dividend problems in a Lévy risk model under periodic observation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    7. Yang, Yang & Su, Wen & Zhang, Zhimin, 2019. "Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 147-155.
    8. Wen Su & Yunyun Wang, 2021. "Estimating the Gerber-Shiu Function in Lévy Insurance Risk Model by Fourier-Cosine Series Expansion," Mathematics, MDPI, vol. 9(12), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:47:y:2017:i:01:p:169-198_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.