IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017238.html
   My bibliography  Save this article

Hydrodynamic performance of a three-unit heave wave energy converter array under different arrangement

Author

Listed:
  • Chen, Wenchuang
  • Huang, Zhenhai
  • Zhang, Yongliang
  • Wang, Liguo
  • Huang, Luofeng

Abstract

A pile-restrained floating wave energy converter (WEC) array is proposed as an alternative to a single floater of the size of the array for use as a floating breakwater. The hydrodynamics of the WEC are modelled based on the Navier-Stokes equations and the model is verified by comparing its results with existing experimental data. The model then is used to characterize the array composed by a line of three WECs in terms of floater heaving, wave energy conversion, wave reflection, transmission and dissipation, for different layouts.

Suggested Citation

  • Chen, Wenchuang & Huang, Zhenhai & Zhang, Yongliang & Wang, Liguo & Huang, Luofeng, 2024. "Hydrodynamic performance of a three-unit heave wave energy converter array under different arrangement," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017238
    DOI: 10.1016/j.renene.2023.119808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Ruiz, Alejandro & Bergillos, Rafael J. & Raffo-Caballero, Juan M. & Ortega-Sánchez, Miguel, 2018. "Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity," Applied Energy, Elsevier, vol. 209(C), pages 20-32.
    2. Bailey, Helen & Robertson, Bryson & Buckham, Bradley, 2018. "Variability and stochastic simulation of power from wave energy converter arrays," Renewable Energy, Elsevier, vol. 115(C), pages 721-733.
    3. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    4. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    5. Murai, Motohiko & Li, Qiao & Funada, Junki, 2021. "Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs," Renewable Energy, Elsevier, vol. 164(C), pages 1121-1132.
    6. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Chen, Ni & Yu, Huifeng & Li, Wei & Göteman, Malin, 2017. "Performance analysis of solo Duck wave energy converter arrays under motion constraints," Energy, Elsevier, vol. 139(C), pages 155-169.
    7. Kara, Fuat, 2016. "Time domain prediction of power absorption from ocean waves with wave energy converter arrays," Renewable Energy, Elsevier, vol. 92(C), pages 30-46.
    8. Vasiliki Stratigaki & Peter Troch & Tim Stallard & David Forehand & Jens Peter Kofoed & Matt Folley & Michel Benoit & Aurélien Babarit & Jens Kirkegaard, 2014. "Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area," Energies, MDPI, vol. 7(2), pages 1-34, February.
    9. Teixeira-Duarte, Felipe & Clemente, Daniel & Giannini, Gianmaria & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2022. "Review on layout optimization strategies of offshore parks for wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Pau Mercadé Ruiz & Francesco Ferri & Jens Peter Kofoed, 2017. "Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    11. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    12. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
    2. Benites-Munoz, Daniela & Huang, Luofeng & Thomas, Giles, 2024. "Optimal array arrangement of oscillating wave surge converters: An analysis based on three devices," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    2. Robertson, Bryson & Bailey, Helen & Leary, Matthew & Buckham, Bradley, 2021. "A methodology for architecture agnostic and time flexible representations of wave energy converter performance," Applied Energy, Elsevier, vol. 287(C).
    3. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    5. Cheng, Yong & Li, Gen & Ji, Chunyan & Fan, Tianhui & Zhai, Gangjun, 2020. "Fully nonlinear investigations on performance of an OWSC (oscillating wave surge converter) in 3D (three-dimensional) open water," Energy, Elsevier, vol. 210(C).
    6. Kara, Fuat, 2022. "Effects of a vertical wall on wave power absorption with wave energy converters arrays," Renewable Energy, Elsevier, vol. 196(C), pages 812-823.
    7. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    8. Zhao, Xuanlie & Ning, Dezhi, 2018. "Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons," Energy, Elsevier, vol. 155(C), pages 226-233.
    9. Zheng, Siming & Zhang, Yongliang, 2018. "Theoretical modelling of a new hybrid wave energy converter in regular waves," Renewable Energy, Elsevier, vol. 128(PA), pages 125-141.
    10. Murai, Motohiko & Li, Qiao & Funada, Junki, 2021. "Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs," Renewable Energy, Elsevier, vol. 164(C), pages 1121-1132.
    11. López-Ruiz, Alejandro & Bergillos, Rafael J. & Lira-Loarca, Andrea & Ortega-Sánchez, Miguel, 2018. "A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays," Energy, Elsevier, vol. 153(C), pages 126-135.
    12. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    13. Han, Meng & Cao, Feifei & Shi, Hongda & Zhu, Kai & Dong, Xiaochen & Li, Demin, 2023. "Layout optimisation of the two-body heaving wave energy converter array," Renewable Energy, Elsevier, vol. 205(C), pages 410-431.
    14. Roy, Sanjoy, 2021. "Analytical estimates of short duration mean power output and variability for deepwater wave power generation," Energy, Elsevier, vol. 230(C).
    15. Malin Göteman & Cameron McNatt & Marianna Giassi & Jens Engström & Jan Isberg, 2018. "Arrays of Point-Absorbing Wave Energy Converters in Short-Crested Irregular Waves," Energies, MDPI, vol. 11(4), pages 1-22, April.
    16. Robertson, Bryson & Bailey, Helen & Buckham, Bradley, 2019. "Resource assessment parameterization impact on wave energy converter power production and mooring loads," Applied Energy, Elsevier, vol. 244(C), pages 1-15.
    17. Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Haigui Kang, 2017. "Hydrodynamic Investigation of an Oscillating Buoy Wave Energy Converter Integrated into a Pile-Restrained Floating Breakwater," Energies, MDPI, vol. 10(5), pages 1-16, May.
    18. Malin Göteman & Jens Engström & Mikael Eriksson & Jan Isberg, 2015. "Fast Modeling of Large Wave Energy Farms Using Interaction Distance Cut-Off," Energies, MDPI, vol. 8(12), pages 1-17, December.
    19. Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
    20. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.