IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p784-d761580.html
   My bibliography  Save this article

Decomposition of the Knapsack Problem for Increasing the Capacity of Operating Rooms

Author

Listed:
  • Alexander Alekseevich Lazarev

    (Institute of Control Sciences, 65 Profsoyuznaya Street, 117997 Moscow, Russia)

  • Darya Vladimirovna Lemtyuzhnikova

    (Institute of Control Sciences, 65 Profsoyuznaya Street, 117997 Moscow, Russia
    Moscow Aviation Institute, 4, Volokolamskoe Shosse, 125993 Moscow, Russia)

  • Mikhail Lvovich Somov

    (Institute of Control Sciences, 65 Profsoyuznaya Street, 117997 Moscow, Russia)

Abstract

This paper is aimed at the problem of scheduling surgeries in operating rooms. To solve this problem, we suggest using some variation of the bin packing problem. The model is based on the actual operation of 10 operating rooms, each of which belongs to a specific department of the hospital. Departments are unevenly loaded, so operations can be moved to operating rooms in other departments. The main goal is to increase patient throughput. It is also necessary to measure how many operations take place in other departments with the proposed solution. The preferred solution is a solution with fewer such operations, all other things being equal. Due to the fact that the mixed-integer linear programming model turned out to be computationally complex, two approximation algorithms were also proposed. They are based on decomposition. The complexity of the proposed algorithms is estimated, and arguments are made regarding their accuracy from a theoretical point of view. To assess the practical accuracy of the algorithms, the Gurobi solver is used. Experiments were conducted on real historical data on surgeries obtained from the Burdenko Neurosurgical Center. Two decomposition algorithms were constructed and a comparative analysis was performed for 10 operating rooms based on real data.

Suggested Citation

  • Alexander Alekseevich Lazarev & Darya Vladimirovna Lemtyuzhnikova & Mikhail Lvovich Somov, 2022. "Decomposition of the Knapsack Problem for Increasing the Capacity of Operating Rooms," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:784-:d:761580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2013. "Stochastic Operating Room Scheduling for High-Volume Specialties Under Block Booking," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 682-692, November.
    2. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    3. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
    4. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    5. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    2. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    5. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    6. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    7. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    8. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    9. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    10. Sepehr Nemati & Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2016. "The Surgical Patient Routing Problem: A Central Planner Approach," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 657-673, November.
    11. Lien Wang & Erik Demeulemeester & Nancy Vansteenkiste & Frank E. Rademakers, 2022. "On the use of partitioning for scheduling of surgeries in the inpatient surgical department," Health Care Management Science, Springer, vol. 25(4), pages 526-550, December.
    12. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2016. "Dynamic job assignment: A column generation approach with an application to surgery allocation," Discussion Papers on Economics 4/2016, University of Southern Denmark, Department of Economics.
    13. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    14. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.
    15. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    16. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    17. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    18. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    19. Benigno, Pierpaolo & Paciello, Luigi, 2014. "Monetary policy, doubts and asset prices," Journal of Monetary Economics, Elsevier, vol. 64(C), pages 85-98.
    20. Dennis, Richard & Kirsanova, Tatiana, 2016. "Computing Markov-Perfect Optimal Policies In Business-Cycle Models," Macroeconomic Dynamics, Cambridge University Press, vol. 20(7), pages 1850-1872, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:784-:d:761580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.