IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i3d10.1007_s10898-020-00920-0.html
   My bibliography  Save this article

Gaussian process optimization with failures: classification and convergence proof

Author

Listed:
  • François Bachoc

    (Université Paul Sabatier)

  • Céline Helbert

    (Univ. de Lyon)

  • Victor Picheny

    (PROWLER.io)

Abstract

We consider the optimization of a computer model where each simulation either fails or returns a valid output performance. We first propose a new joint Gaussian process model for classification of the inputs (computation failure or success) and for regression of the performance function. We provide results that allow for a computationally efficient maximum likelihood estimation of the covariance parameters, with a stochastic approximation of the likelihood gradient. We then extend the classical improvement criterion to our setting of joint classification and regression. We provide an efficient computation procedure for the extended criterion and its gradient. We prove the almost sure convergence of the global optimization algorithm following from this extended criterion. We also study the practical performances of this algorithm, both on simulated data and on a real computer model in the context of automotive fan design.

Suggested Citation

  • François Bachoc & Céline Helbert & Victor Picheny, 2020. "Gaussian process optimization with failures: classification and convergence proof," Journal of Global Optimization, Springer, vol. 78(3), pages 483-506, November.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:3:d:10.1007_s10898-020-00920-0
    DOI: 10.1007/s10898-020-00920-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00920-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00920-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    2. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
    3. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    3. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    4. Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Discussion Paper 2014-012, Tilburg University, Center for Economic Research.
    5. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    6. Arvind Krishna & Huan Tran & Chaofan Huang & Rampi Ramprasad & V. Roshan Joseph, 2024. "Adaptive Exploration and Optimization of Materials Crystal Structures," INFORMS Joural on Data Science, INFORMS, vol. 3(1), pages 68-83, April.
    7. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    8. Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
    9. Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Other publications TiSEM dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
    10. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.
    12. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Papers 2020_21, Business School - Economics, University of Glasgow.
    13. Biewen, Martin & Kugler, Philipp, 2021. "Two-stage least squares random forests with an application to Angrist and Evans (1998)," Economics Letters, Elsevier, vol. 204(C).
    14. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    15. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2022. "A complexity view on the future of work. Meta-modelling exploration of the multi-sector K+S agent based model," LEM Papers Series 2022/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    17. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    18. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    19. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.
    20. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:3:d:10.1007_s10898-020-00920-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.