IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p562-d747152.html
   My bibliography  Save this article

Permutation Variation and Alternative Hyper-Sphere Decomposition

Author

Listed:
  • Qingze Li

    (School of Mathematics and Statistics, Yunnan University, Kunming 650091, China
    These authors contributed equally to this work.)

  • Jianxin Pan

    (Research Center for Mathematics, Beijing Normal University at Zhuhai, Zhuhai 519087, China
    Division of Science and Technology, United International College (BNU-HKBU), Zhuhai 519087, China
    These authors contributed equally to this work.)

Abstract

Current covariance modeling methods work well in longitudinal data analysis. In the analysis of data with no nature order, a common covariance modeling method would be inadequate. In this paper, a study is implemented to investigate the effects of permutations of data on the estimation of covariance matrix Σ . Based on the Hyper-sphere decomposition method (HPC), this study suggests that the change of data’s permutation breaks the consistency of covariance estimation. An alternative Hyper-sphere decomposition method with permutation invariant is introduced later in this paper. The alternative method’s consistency and asymptotic normality are studied when the observations follow a normal distribution. These results are tested using some example studies. Furthermore, a real data analysis is conducted for illustration purposes.

Suggested Citation

  • Qingze Li & Jianxin Pan, 2022. "Permutation Variation and Alternative Hyper-Sphere Decomposition," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:562-:d:747152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    2. Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
    3. Weiping Zhang & Chenlei Leng & Cheng Yong Tang, 2015. "A joint modelling approach for longitudinal studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 219-238, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    2. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    3. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    4. Cho, Hyunkeun & Kim, Seonjin, 2017. "Model specification test in a semiparametric regression model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 105-116.
    5. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    6. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    7. Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
    8. Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
    9. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
    10. Ziqi Chen & Man†Lai Tang & Wei Gao, 2018. "A profile likelihood approach for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 74(1), pages 220-228, March.
    11. Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    12. Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
    13. Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
    14. Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
    15. Luo, Renwen & Pan, Jianxin, 2022. "Conditional generalized estimating equations of mean-variance-correlation for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    16. Chen, Huaihou & Paik, Myunghee Cho & Dhamoon, Mandip S. & Moon, Yeseon Park & Willey, Joshua & Sacco, Ralph L. & Elkind, Mitchell S.V., 2012. "Semiparametric model for the dichotomized functional outcome after stroke: The Northern Manhattan Study," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2598-2608.
    17. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
    18. Zhao, Yan-Yong & Lin, Jin-Guan & Zhao, Jian-Qiang & Miao, Zhang-Xiao, 2022. "Estimation of semi-varying coefficient models for longitudinal data with irregular error structure," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    19. Yanqing Sun & Qiong Shou & Peter B. Gilbert & Fei Heng & Xiyuan Qian, 2023. "Semiparametric additive time‐varying coefficients model for longitudinal data with censored time origin," Biometrics, The International Biometric Society, vol. 79(2), pages 695-710, June.
    20. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:562-:d:747152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.