IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p521-d743361.html
   My bibliography  Save this article

Application of Fractional Order-PID Control Scheme in Automatic Generation Control of a Deregulated Power System in the Presence of SMES Unit

Author

Listed:
  • Nagendra Kumar

    (Electrical & Electronics Engineering Department, G. L. Bajaj Institute of Technology & Management, Greater Noida 201306, India)

  • Majed A. Alotaibi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Akhilesh Singh

    (Electrical and Electronics Engineering Department, Nanhi Pari Institute of Technology, Pithoragarh 262501, India)

  • Hasmat Malik

    (BEARS, University Town, NUS Campus, Singapore 138602, Singapore)

  • Mohammed E. Nassar

    (Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

Abstract

A fractional order PID (FOPID) control technique for automatic generation control (AGC) in a multi-area power system is presented in this study. To create a reliable controller, a variety of control strategies were used. The load frequency control (LFC) problem in a power system implementing different power transactions, such as bilateral and Poolco transactions, are investigated here. Because any control scheme’s performance is only as good as its parameters, the parameters of the designed control scheme were determined using the big bang big crunch (BBBC) algorithm. Furthermore, in this work, the effect of a superconductive magnetic energy storage (SMES) unit is addressed in the given test (two and four area) systems. When confronted with a fluctuation in immediate load, the SMES unit is thought to follow the initial drop in frequency and tie-line power in order to increase LFC. It is evident that the performance of an FOPID control scheme is improved in the presence of an SMES unit and it provides frequency, tie-line power, change in generation with reduced oscillations and settling time.

Suggested Citation

  • Nagendra Kumar & Majed A. Alotaibi & Akhilesh Singh & Hasmat Malik & Mohammed E. Nassar, 2022. "Application of Fractional Order-PID Control Scheme in Automatic Generation Control of a Deregulated Power System in the Presence of SMES Unit," Mathematics, MDPI, vol. 10(3), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:521-:d:743361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandey, Shashi Kant & Mohanty, Soumya R. & Kishor, Nand, 2013. "A literature survey on load–frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 318-334.
    2. Tarkeshwar Mahto & Rakesh Kumar & Hasmat Malik & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Fractional Order Fuzzy Based Virtual Inertia Controller Design for Frequency Stability in Isolated Hybrid Power Systems," Energies, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    2. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    3. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    4. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    5. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    7. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    8. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    11. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    12. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    13. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    14. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    15. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    16. Pappachen, Abhijith & Peer Fathima, A., 2017. "Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 163-177.
    17. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    18. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2021. "Sustainable advanced distribution management system design considering differential pricing schemes and carbon emissions," Energy, Elsevier, vol. 219(C).
    19. Xiao Qi & Yan Bai, 2017. "Improved Linear Active Disturbance Rejection Control for Microgrid Frequency Regulation," Energies, MDPI, vol. 10(7), pages 1-20, July.
    20. Chunyu Chen & Kaifeng Zhang & Kun Yuan & Xianliang Teng, 2017. "Tie-Line Bias Control Applicability to Load Frequency Control for Multi-Area Interconnected Power Systems of Complex Topology," Energies, MDPI, vol. 10(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:521-:d:743361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.