IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4829-d1007965.html
   My bibliography  Save this article

Modeling the Operation of Signal-Controlled Intersections with Different Lane Occupancy

Author

Listed:
  • Viacheslav Morozov

    (Department of Road Transport Operation, Industrial University of Tyumen, 625000 Tyumen, Russia)

  • Vladimir Shepelev

    (Department of Automobile Transportation, South Ural State University (National Research University), 454080 Chelyabinsk, Russia)

  • Viktor Kostyrchenko

    (Department of Road Transport and Technological Systems, Industrial University of Tyumen, 625000 Tyumen, Russia)

Abstract

In many cities of the world, the problem of traffic congestion on the roads remains relevant and unresolved. It is especially noticeable at signal-controlled intersections, since traffic signalization is among the most important factors that reduce the maximum possible value of the traffic flow rate at the exit of a street intersection. Therefore, the development of a methodology aimed at reducing transport losses when pedestrians move through signal-controlled intersections is a joint task for the research and engineering community and municipalities. This paper is a continuation of a study wherein the results produced a mathematical model of the influence of lane occupancy and traffic signalization on the traffic flow rate. These results were then experimentally confirmed. The purpose of this work is to develop a method for the practical application of the mathematical model thus obtained. Together with the obtained results of the previous study, as well as a systems approach, traffic flow theory, impulses, probabilities and mathematical statistics form the methodological basis of this work. This paper established possible areas for the practical application of the previously obtained mathematical model. To collect the initial experimental data, open-street video surveillance cameras were used as vehicle detectors, the image streams of which were processed in real time using neural network technologies. Based on the results of this work, a new method was developed that allows for the adjustment of the traffic signal cycle, considering the influence of lane occupancy. In addition, the technological, economic and environmental effects were calculated, which was achieved through the application of the proposed method.

Suggested Citation

  • Viacheslav Morozov & Vladimir Shepelev & Viktor Kostyrchenko, 2022. "Modeling the Operation of Signal-Controlled Intersections with Different Lane Occupancy," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4829-:d:1007965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gurami Tsitsiashvili, 2021. "Construction and Analysis of Queuing and Reliability Models Using Random Graphs," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    2. Saulius Minkevičius & Igor Katin & Joana Katina & Irina Vinogradova-Zinkevič, 2021. "On Little’s Formula in Multiphase Queues," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    3. Viacheslav Morozov & Sergei Iarkov, 2021. "Formation of the Traffic Flow Rate under the Influence of Traffic Flow Concentration in Time at Controlled Intersections in Tyumen, Russian Federation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    4. Fan-Qi Ma & Rui-Na Fan, 2022. "Queuing Theory of Improved Practical Byzantine Fault Tolerant Consensus," Mathematics, MDPI, vol. 10(2), pages 1-12, January.
    5. Dmitriy Zakharov & Elena Magaril & Elena Cristina Rada, 2018. "Sustainability of the Urban Transport System under Changes in Weather and Road Conditions Affecting Vehicle Operation," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    6. Caitlin D. Cottrill & Sybil Derrible, 2015. "Leveraging Big Data for the Development of Transport Sustainability Indicators," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 45-64, January.
    7. Vladimir Shepelev & Sergei Aliukov & Kseniya Nikolskaya & Salavat Shabiev, 2020. "The Capacity of the Road Network: Data Collection and Statistical Analysis of Traffic Characteristics," Energies, MDPI, vol. 13(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Shepelev & Aleksandr Glushkov & Ivan Slobodin & Yuri Cherkassov, 2023. "Measuring and Modelling the Concentration of Vehicle-Related PM2.5 and PM10 Emissions Based on Neural Networks," Mathematics, MDPI, vol. 11(5), pages 1-23, February.
    2. Hongyan Dui & Yulu Zhang & Songru Zhang & Yun-An Zhang, 2023. "Recovery Model and Maintenance Optimization for Urban Road Networks with Congestion," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    3. Irina Makarova & Azhar Serikkaliyeva & Larysa Gubacheva & Eduard Mukhametdinov & Polina Buyvol & Aleksandr Barinov & Vladimir Shepelev & Gulnaz Mavlyautdinova, 2023. "The Role of Multimodal Transportation in Ensuring Sustainable Territorial Development: Review of Risks and Prospects," Sustainability, MDPI, vol. 15(7), pages 1-27, April.
    4. Bong Gu Kang & Byeong Soo Kim, 2023. "A Study on Cognitive Error Validation for LED In-Ground Traffic Lights Using a Digital Twin and Virtual Environment," Mathematics, MDPI, vol. 11(17), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitrii Zakharov & Alexey Fadyushin & Denis Chainikov, 2020. "Changes in the Environmental Sustainability of the Urban Transport System when Introducing Paid Parking for Private Vehicles," Resources, MDPI, vol. 9(9), pages 1-18, August.
    2. Viacheslav Morozov & Sergei Iarkov, 2021. "Formation of the Traffic Flow Rate under the Influence of Traffic Flow Concentration in Time at Controlled Intersections in Tyumen, Russian Federation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    3. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    4. Danaf, Mazen & Atasoy, Bilge & de Azevedo, Carlos Lima & Ding-Mastera, Jing & Abou-Zeid, Maya & Cox, Nathaniel & Zhao, Fang & Ben-Akiva, Moshe, 2019. "Context-aware stated preferences with smartphone-based travel surveys," Journal of choice modelling, Elsevier, vol. 31(C), pages 35-50.
    5. Cottrill, Caitlin D., 2020. "MaaS surveillance: Privacy considerations in mobility as a service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 50-57.
    6. Breno Tostes de Gomes Garcia & Diana Mery Messias Lopes & Ilton Curty Leal Junior & José Carlos Cesar Amorim & Marcelino Aurélio Vieira da Silva & Vanessa de Almeida Guimarães, 2019. "Analysis of the Performance of Transporting Soybeans from Mato Grosso for Export: A Case Study of the Tapajós-Teles Pires Waterway," Sustainability, MDPI, vol. 11(21), pages 1-26, November.
    7. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    8. Steven C Bourassa & Martin Hoesli & Louis Merlin & John Renne, 2021. "Big data, accessibility and urban house prices," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3176-3195, November.
    9. Kumar, Aalok & Anbanandam, Ramesh, 2022. "Assessment of environmental and social sustainability performance of the freight transportation industry: An index-based approach," Transport Policy, Elsevier, vol. 124(C), pages 43-60.
    10. Nasrin, Sharmin & Bunker, Jonathan, 2024. "Gender equality through sustainable transport policy," Transport Policy, Elsevier, vol. 149(C), pages 59-79.
    11. Bingsheng Huang & Fusheng Zhang, 2022. "Analysis of Traffic Oversaturation Based on Multi-Objective Data," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    12. Meenakshi Kandpal & Niharika Keshari & Amrendra Singh Yadav & Mohit Yadav & Rabindra Kumar Barik, 2024. "Modelling of blockchain based queuing theory implementing preemptive and non-preemptive algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2554-2570, June.
    13. Alexey Terentyev & Alexey Marusin & Sergey Evtyukov & Aleksandr Marusin & Anastasia Shevtsova & Vladimir Zelenov, 2023. "Analytical Model for Information Flow Management in Intelligent Transport Systems," Mathematics, MDPI, vol. 11(15), pages 1-16, August.
    14. Fadyushin Alexey & Zakharov Dmitrii, 2020. "Influence of the Parameters of the Bus Lane and the Bus Stop on the Delays of Private and Public Transport," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    15. Shereen Wael & Abeer Elshater & Samy Afifi, 2022. "Mapping User Experiences around Transit Stops Using Computer Vision Technology: Action Priorities from Cairo," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    16. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    17. Meisam Akbarzadeh & Soroush Memarmontazerin & Sybil Derrible & Sayed Farzin Salehi Reihani, 2019. "The role of travel demand and network centrality on the connectivity and resilience of an urban street system," Transportation, Springer, vol. 46(4), pages 1127-1141, August.
    18. Amirhassan Kermanshah & Sybil Derrible, 2017. "Robustness of road systems to extreme flooding: using elements of GIS, travel demand, and network science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 151-164, March.
    19. Chung, Sai-Ho, 2021. "Applications of smart technologies in logistics and transport: A review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    20. Dmitriy Zakharov & Elena Magaril & Elena Cristina Rada, 2018. "Sustainability of the Urban Transport System under Changes in Weather and Road Conditions Affecting Vehicle Operation," Sustainability, MDPI, vol. 10(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4829-:d:1007965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.