IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2004-d1130966.html
   My bibliography  Save this article

Recovery Model and Maintenance Optimization for Urban Road Networks with Congestion

Author

Listed:
  • Hongyan Dui

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Yulu Zhang

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Songru Zhang

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Yun-An Zhang

    (Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China)

Abstract

Urban road networks have promoted high-quality travel for residents by increasing connectivity and intelligence. But road congestion has not been effectively alleviated, causing a loss of time and energy. At present, the recovery of urban road networks mainly considers removing the failed edges. Considering the recovery cost and time, it is important to take active maintenance behavior to restore these networks. One of the key problems is dispatching traffic workers reasonably to achieve timely maintenance. In this paper, a flow-distribution-based process and execution (FD-PE) model is established for solving congestion. The maintenance centers (MC) study the reasons for and spread of congestion by edge flow. Based on the genetic algorithm (GA), two models of maintenance for urban road networks are developed, which include a single MC-centered dispatching plan and the co-scheduling of MCs. Both models aim at minimizing recovery time and allocating maintenance resources. The road network in Zhengzhou is borrowed as a case to explain the feasibility of the proposed models. The results show that on the premise of dividing network regions, it is reasonable to take a single MC to recover congestion. Compared with a single MC, the co-scheduling of MCs may save more time.

Suggested Citation

  • Hongyan Dui & Yulu Zhang & Songru Zhang & Yun-An Zhang, 2023. "Recovery Model and Maintenance Optimization for Urban Road Networks with Congestion," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2004-:d:1130966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    2. Dui, Hongyan & Chen, Shuanshuan & Wang, Jia, 2021. "Failure-oriented maintenance analysis of nodes and edges in network systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Viacheslav Morozov & Vladimir Shepelev & Viktor Kostyrchenko, 2022. "Modeling the Operation of Signal-Controlled Intersections with Different Lane Occupancy," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    4. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun, 2022. "Improving the Road and Traffic Control Prediction Based on Fuzzy Logic Approach in Multiple Intersections," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    5. Chen, Yuting & Mao, Jiannan & Zhang, Zhao & Huang, Hao & Lu, Weike & Yan, Qipeng & Liu, Lan, 2022. "A quasi-contagion process modeling and characteristic analysis for real-world urban traffic network congestion patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Dui, Hongyan & Chen, Shuanshuan & Zhou, Yanjie & Wu, Shaomin, 2022. "Maintenance analysis of transportation networks by the traffic transfer principle considering node idle capacity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Hongyan Dui & Yuheng Yang & Yun-an Zhang & Yawen Zhu, 2022. "Recovery Analysis and Maintenance Priority of Metro Networks Based on Importance Measure," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    10. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Dui, Hongyan & Chen, Shuanshuan & Zhou, Yanjie & Wu, Shaomin, 2022. "Maintenance analysis of transportation networks by the traffic transfer principle considering node idle capacity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Wang, Longjian & Zhang, Shuichao & Szűcs, Gábor & Wang, Yonggang, 2024. "Identifying the critical nodes in multi-modal transportation network with a traffic demand-based computational method," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Zhang, Lu & Cui, Li & Chen, Lujie & Dai, Jing & Jin, Ziyi & Wu, Hao, 2023. "A hybrid approach to explore the critical criteria of online supply chain finance to improve supply chain performance," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Liu, Juncai & Tian, Li & Yang, Meng & Meng, Xiangrui, 2024. "Probabilistic framework for seismic resilience assessment of transmission tower-line systems subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Hongyan Dui & Xinyue Wang & Haohao Zhou, 2023. "Redundancy-Based Resilience Optimization of Multi-Component Systems," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    11. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    13. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    15. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    17. Liu, Aijun & Li, Zengxian & Shang, Wen-Long & Ochieng, Washington, 2023. "Performance evaluation model of transportation infrastructure: Perspective of COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    18. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2004-:d:1130966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.