IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3589-d931249.html
   My bibliography  Save this article

Studying the Efficiency of Parallelization in Optimal Control of Multistage Chemical Reactions

Author

Listed:
  • Maxim Sakharov

    (CAD/CAE/PLM Department, Bauman Moscow State Technical University, 105005 Moscow, Russia)

  • Kamila Koledina

    (Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 450075 Ufa, Russia)

  • Irek Gubaydullin

    (Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 450075 Ufa, Russia)

  • Anatoly Karpenko

    (CAD/CAE/PLM Department, Bauman Moscow State Technical University, 105005 Moscow, Russia)

Abstract

In this paper, we investigate the problem of optimal control of complex multistage chemical reactions, which is considered a nonlinear global constrained optimization problem. This class of problems is computationally expensive due to the inclusion of multiple parameters and requires parallel computing systems and algorithms to obtain a solution within a reasonable time. However, the efficiency of parallel algorithms can differ depending on the architecture of the computing system. One available approach to deal with this is the development of specialized optimization algorithms that consider not only problem-specific features but also peculiarities of a computing system in which the algorithms are launched. In this work, we developed a novel parallel population algorithm based on the mind evolutionary computation method. This algorithm is designed for desktop girds and works in synchronous and asynchronous modes. The algorithm and its software implementation were used to solve the problem of the catalytic reforming of gasoline and to study the parallelization efficiency. Results of the numerical experiments are presented in this paper.

Suggested Citation

  • Maxim Sakharov & Kamila Koledina & Irek Gubaydullin & Anatoly Karpenko, 2022. "Studying the Efficiency of Parallelization in Optimal Control of Multistage Chemical Reactions," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3589-:d:931249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Koledin & Kamila Koledina & Irek Gubaydullin, 2023. "Multiobjective Optimization of a Metal Complex Catalytic Reaction Based on a Detailed Kinetic Model with Parallelization of Calculations," Mathematics, MDPI, vol. 11(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aline Pioli Silva & Juliana Otavia Bahú & Renato Soccol & Leonardo Rodríguez-Urrego & William Stive Fajardo-Moreno & Hiram Moya & Jeffrey León-Pulido & Víktor Oswaldo Cárdenas Concha, 2023. "Naphtha Characterization (PIONA, Density, Distillation Curve and Sulfur Content): An Origin Comparison," Energies, MDPI, vol. 16(8), pages 1-12, April.
    2. Wang, Tiejun & Yang, Yong & Ding, Mingyue & Liu, Qiying & Ma, Longlong, 2013. "Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: Promotion of hot-electron," Applied Energy, Elsevier, vol. 112(C), pages 448-453.
    3. Li, Xianglin & Jiang, Yuchen & Zhang, Lijun & Li, Qingyin & Zhang, Shu & Wang, Yi & Hu, Xun, 2023. "Pyrolysis-reforming of cellulose to simultaneously produce hydrogen and heavy organics," Energy, Elsevier, vol. 265(C).
    4. Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
    5. Wang, Buyu & Wang, Zhi & Shuai, Shijin & Xu, Hongming, 2015. "Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines," Applied Energy, Elsevier, vol. 160(C), pages 769-776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3589-:d:931249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.