IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3586-d931146.html
   My bibliography  Save this article

Variable-Speed Wind Turbines for Grid Frequency Support: A Systematic Literature Review

Author

Listed:
  • Aksher Bhowon

    (Department of Electrical, Electronic, and Computer Engineering, Cape Peninsula University of Technology, Cape Town 7535, South Africa)

  • Khaled M. Abo-Al-Ez

    (Department of Electrical, Electronic, and Computer Engineering, Centre for Power Systems Research (CPSR), Cape Peninsula University of Technology, Cape Town 7535, South Africa)

  • Marco Adonis

    (Department of Electrical, Electronic, and Computer Engineering, Centre for Distributed Power and Electronics Systems (CDPES), Cape Peninsula University of Technology, Cape Town 7535, South Africa)

Abstract

As the finite nature of non-renewable energy resources is realised and climate change concerns become more prevalent, the need to shift to more sustainable forms of energy such as the adoption of renewable energy has seen an increase. More specifically, wind energy conversion systems (WECS) have become increasingly important as a contribution to grid frequency support, to maintain power at the nominal frequency and mitigate power failures or supply shortages against demand. Therefore, limiting deviations in frequency is imperative and, thus, the control methods of WECS are called to be investigated. The systematic literature review methodology was used and aimed at investigating these control methods used by WECS, more specifically variable-speed wind turbines (VSWT), in supporting grid frequency as well as the limitations of such methods. The paper identifies these to be de-loading, energy storage systems and emulated inertial response. Further classification of these is presented regarding these control methods, which are supported by literature within period of 2015–2022. The literature indicated a persistent interest in this field; however, a few limitations of VSWTS were identified. The emulated inertial response, specifically using a droop control-based frequency support scheme, was the primary means of providing frequency support. This systematic literature review may be limited by the number of papers selected for the study. Results and conclusions will not only be useful for WECS development but also in assisting with the security of the transmission grid’s frequency stability. Future work will focus on further studying the limitations of WECS providing frequency support.

Suggested Citation

  • Aksher Bhowon & Khaled M. Abo-Al-Ez & Marco Adonis, 2022. "Variable-Speed Wind Turbines for Grid Frequency Support: A Systematic Literature Review," Mathematics, MDPI, vol. 10(19), pages 1-25, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3586-:d:931146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    2. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zsolt Čonka & Ľubomír Beňa & Róbert Štefko & Marek Pavlík & Peter Holcsik & Judith Pálfi, 2022. "Wind Turbine Power Control According to EU Legislation," Energies, MDPI, vol. 15(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    2. Xiangwu Yan & Xuewei Sun, 2020. "Inertia and Droop Frequency Control Strategy of Doubly-Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Jun Wang & Yien Xu & Xiaoxin Wu & Jiejie Huang & Xinsong Zhang & Hongliang Yuan, 2021. "Enhanced Inertial Response Capability of a Variable Wind Energy Conversion System," Energies, MDPI, vol. 14(23), pages 1-13, December.
    4. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    5. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    6. Hua Li & Xudong Li & Weichen Xiong & Yichen Yan & Yuanhang Zhang & Peng Kou, 2023. "Cooperative Voltage and Frequency Regulation with Wind Farm: A Model-Based Offline Optimal Control Approach," Energies, MDPI, vol. 16(17), pages 1-19, August.
    7. Muhammad Salman Shahid & Seun Osonuga & Nana Kofi Twum-Duah & Sacha Hodencq & Benoit Delinchant & Frédéric Wurtz, 2023. "An Assessment of Energy Flexibility Solutions from the Perspective of Low-Tech," Energies, MDPI, vol. 16(7), pages 1-29, April.
    8. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    9. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    10. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Guerrero, Josep M. & David Agundis Tinajero, Gibran, 2022. "Synergizing pico hydel and battery energy storage with adaptive synchronverter control for frequency regulation of autonomous microgrids," Applied Energy, Elsevier, vol. 325(C).
    11. Al kez, Dlzar & Foley, Aoife M. & McIlwaine, Neil & Morrow, D. John & Hayes, Barry P. & Zehir, M. Alparslan & Mehigan, Laura & Papari, Behnaz & Edrington, Chris S. & Baran, Mesut, 2020. "A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation," Energy, Elsevier, vol. 205(C).
    12. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
    13. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    14. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    15. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    16. Ting-Hsuan Chien & Yu-Chuan Huang & Yuan-Yih Hsu, 2020. "Neural Network-Based Supplementary Frequency Controller for a DFIG Wind Farm," Energies, MDPI, vol. 13(20), pages 1-15, October.
    17. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    18. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    19. Tai Li & Leqiu Wang & Yanbo Wang & Guohai Liu & Zhiyu Zhu & Yongwei Zhang & Li Zhao & Zhicheng Ji, 2021. "Data-Driven Virtual Inertia Control Method of Doubly Fed Wind Turbine," Energies, MDPI, vol. 14(17), pages 1-18, September.
    20. Jimiao Zhang & Jie Li, 2024. "Hybrid Deloading Control Strategy in MMC-Based Wind Energy Conversion Systems for Enhanced Frequency Regulation," Energies, MDPI, vol. 17(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3586-:d:931146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.