IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v26y2020i2d10.1007_s10732-019-09431-y.html
   My bibliography  Save this article

A hybrid genetic algorithm for the traveling salesman problem with drone

Author

Listed:
  • Quang Minh Ha

    (Université Catholique de Louvain)

  • Yves Deville

    (Université Catholique de Louvain)

  • Quang Dung Pham

    (Hanoi University of Technology)

  • Minh Hoàng Hà

    (VNU University of Engineering and Technology)

Abstract

This paper addresses the traveling salesman problem with drone (TSP-D), in which a truck and drone are used to deliver parcels to customers. The objective of this problem is to either minimize the total operational cost (min-cost TSP-D) or minimize the completion time for the truck and drone (min-time TSP-D). This problem has gained a lot of attention in the last few years reflecting the recent trends in a new delivery method among logistics companies. To solve the TSP-D, we propose a hybrid genetic search with dynamic population management and adaptive diversity control based on a split algorithm, problem-tailored crossover and local search operators, a new restore method to advance the convergence and an adaptive penalization mechanism to dynamically balance the search between feasible/infeasible solutions. The computational results show that the proposed algorithm outperforms two existing methods in terms of solution quality and improves many best known solutions found in the literature. Moreover, various analyses on the impacts of crossover choice and heuristic components have been conducted to investigate their sensitivity to the performance of our method.

Suggested Citation

  • Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
  • Handle: RePEc:spr:joheur:v:26:y:2020:i:2:d:10.1007_s10732-019-09431-y
    DOI: 10.1007/s10732-019-09431-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-019-09431-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-019-09431-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    3. Bulhões, Teobaldo & Hà, Minh Hoàng & Martinelli, Rafael & Vidal, Thibaut, 2018. "The vehicle routing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 544-558.
    4. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    5. Fred Glover & Jin-Kao Hao, 2011. "The case for strategic oscillation," Annals of Operations Research, Springer, vol. 183(1), pages 163-173, March.
    6. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    2. Vincent F. Yu & Shih-Wei Lin & Panca Jodiawan & Yu-Chi Lai, 2023. "Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    3. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    4. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    5. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    6. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    7. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    8. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.
    9. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    10. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Homsi, Gabriel & Martinelli, Rafael & Vidal, Thibaut & Fagerholt, Kjetil, 2020. "Industrial and tramp ship routing problems: Closing the gap for real-scale instances," European Journal of Operational Research, Elsevier, vol. 283(3), pages 972-990.
    5. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    6. Alberto Santini & Michael Schneider & Thibaut Vidal & Daniele Vigo, 2023. "Decomposition Strategies for Vehicle Routing Heuristics," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 543-559, May.
    7. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    8. Thibaut Vidal, 2017. "Node, Edge, Arc Routing and Turn Penalties: Multiple Problems—One Neighborhood Extension," Operations Research, INFORMS, vol. 65(4), pages 992-1010, August.
    9. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    10. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
    11. Lahrichi, Nadia & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter & Crişan, Gloria Cerasela & Vidal, Thibaut, 2015. "An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: Application to the MDPVRP," European Journal of Operational Research, Elsevier, vol. 246(2), pages 400-412.
    12. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    13. Zhang, Zhenzhen & Liu, Mengyang & Lim, Andrew, 2015. "A memetic algorithm for the patient transportation problem," Omega, Elsevier, vol. 54(C), pages 60-71.
    14. Alan Lee & Martin Savelsbergh, 2017. "An extended demand responsive connector," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 25-50, March.
    15. Cattaruzza, Diego & Absi, Nabil & Feillet, Dominique & Vidal, Thibaut, 2014. "A memetic algorithm for the Multi Trip Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 833-848.
    16. Lin Zhou & Xu Wang & Lin Ni & Yun Lin, 2016. "Location-Routing Problem with Simultaneous Home Delivery and Customer’s Pickup for City Distribution of Online Shopping Purchases," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    17. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    18. Bulhões, Teobaldo & Hà, Minh Hoàng & Martinelli, Rafael & Vidal, Thibaut, 2018. "The vehicle routing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 544-558.
    19. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    20. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:26:y:2020:i:2:d:10.1007_s10732-019-09431-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.