IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3196-d906431.html
   My bibliography  Save this article

A Unified Local-Semilocal Convergence Analysis of Efficient Higher Order Iterative Methods in Banach Spaces

Author

Listed:
  • Janak Raj Sharma

    (Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India)

  • Harmandeep Singh

    (Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India)

  • Ioannis K. Argyros

    (Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA)

Abstract

To deal with the estimation of the locally unique solutions of nonlinear systems in Banach spaces, the local as well as semilocal convergence analysis is established for two higher order iterative methods. The given methods do not involve the computation of derivatives of an order higher than one. However, the convergence analysis was carried out in earlier studies by using the assumptions on the higher order derivatives as well. Such types of assumptions limit the applicability of techniques. In this regard, the convergence analysis is developed in the present study by imposing the conditions on first order derivatives only. The central idea for the local analysis is to estimate the bounds on convergence domain as well as the error approximations of the iterates along with the formulation of sufficient conditions for the uniqueness of the solution. Based on the choice of initial estimate in the given domain, the semilocal analysis is established, which ensures the convergence of iterates to a unique solution in that domain. Further, some applied problems are tested to certify the theoretical deductions.

Suggested Citation

  • Janak Raj Sharma & Harmandeep Singh & Ioannis K. Argyros, 2022. "A Unified Local-Semilocal Convergence Analysis of Efficient Higher Order Iterative Methods in Banach Spaces," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3196-:d:906431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez, Eulalia & Singh, Sukhjit & Hueso, José L. & Gupta, Dharmendra K., 2016. "Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 252-265.
    2. Ioannis K. Argyros, 2021. "Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
    3. Cordero, A. & Ezquerro, J.A. & Hernández-Verón, M.A. & Torregrosa, J.R., 2015. "On the local convergence of a fifth-order iterative method in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 396-403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukhjit Singh & Eulalia Martínez & Abhimanyu Kumar & D. K. Gupta, 2020. "Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations," Mathematics, MDPI, vol. 8(3), pages 1-11, March.
    2. Samundra Regmi & Ioannis K. Argyros & Santhosh George & Michael I. Argyros, 2022. "A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton–Kantorovich Iterations-II," Mathematics, MDPI, vol. 10(11), pages 1-12, May.
    3. Manoj K. Singh & Ioannis K. Argyros, 2022. "The Dynamics of a Continuous Newton-like Method," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    4. Santhosh George & Jidesh Padikkal & Krishnendu Remesh & Ioannis K. Argyros, 2022. "A New Parameter Choice Strategy for Lavrentiev Regularization Method for Nonlinear Ill-Posed Equations," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    5. Singh, Sukhjit & Gupta, Dharmendra Kumar & Martínez, E. & Hueso, José L., 2016. "Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 266-277.
    6. Sukjith Singh & Eulalia Martínez & P. Maroju & Ramandeep Behl, 2020. "A study of the local convergence of a fifth order iterative method," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 439-455, June.
    7. Martínez, Eulalia & Singh, Sukhjit & Hueso, José L. & Gupta, Dharmendra K., 2016. "Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 252-265.
    8. Ioannis K. Argyros & Samundra Regmi & Stepan Shakhno & Halyna Yarmola, 2022. "A Methodology for Obtaining the Different Convergence Orders of Numerical Method under Weaker Conditions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    9. Ramandeep Behl & Ioannis K. Argyros & Ali Saleh Alshomrani, 2019. "High Convergence Order Iterative Procedures for Solving Equations Originating from Real Life Problems," Mathematics, MDPI, vol. 7(9), pages 1-12, September.
    10. Michael I. Argyros & Ioannis K. Argyros & Samundra Regmi & Santhosh George, 2022. "Generalized Three-Step Numerical Methods for Solving Equations in Banach Spaces," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    11. Samundra Regmi & Ioannis K. Argyros & Santhosh George & Christopher I. Argyros, 2022. "A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton-Kantorovich Iterations," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    12. Ioannis K. Argyros & Christopher Argyros & Johan Ceballos & Daniel González, 2022. "Extended Comparative Study between Newton’s and Steffensen-like Methods with Applications," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    13. Lotfi, Taher & Assari, Paria, 2015. "New three- and four-parametric iterative with memory methods with efficiency index near 2," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 1004-1010.
    14. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3196-:d:906431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.