IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i2d10.1007_s13226-020-0409-5.html
   My bibliography  Save this article

A study of the local convergence of a fifth order iterative method

Author

Listed:
  • Sukjith Singh

    (Dr. B.R. Ambedkar Nationl Instutute of Technology)

  • Eulalia Martínez

    (Universitat Politècnica de València)

  • P. Maroju

    (Amrita Vishwa Vidhyapeetham)

  • Ramandeep Behl

    (King Abdulaziz University)

Abstract

We present a local convergence study of a fifth order iterative method to approximate a locally unique root of nonlinear equations. The analysis is discussed under the assumption that first order Fréchet derivative satisfies the Lipschitz continuity condition. Moreover, we consider the derivative free method that obtained through approximating the derivative with divided difference along with the local convergence study. Finally, we provide computable radii and error bounds based on the Lipschitz constant for both cases. Some of the numerical examples are worked out and compared the results with existing methods.

Suggested Citation

  • Sukjith Singh & Eulalia Martínez & P. Maroju & Ramandeep Behl, 2020. "A study of the local convergence of a fifth order iterative method," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 439-455, June.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:2:d:10.1007_s13226-020-0409-5
    DOI: 10.1007/s13226-020-0409-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0409-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0409-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martínez, Eulalia & Singh, Sukhjit & Hueso, José L. & Gupta, Dharmendra K., 2016. "Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 252-265.
    2. Singh, Sukhjit & Gupta, Dharmendra Kumar & Martínez, E. & Hueso, José L., 2016. "Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 266-277.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukhjit Singh & Eulalia Martínez & Abhimanyu Kumar & D. K. Gupta, 2020. "Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations," Mathematics, MDPI, vol. 8(3), pages 1-11, March.
    2. Abhimanyu Kumar & D. K. Gupta & Shwetabh Srivastava, 2017. "Influence of the Center Condition on the Two-Step Secant Method," International Journal of Analysis, Hindawi, vol. 2017, pages 1-9, September.
    3. Ramandeep Behl & Ioannis K. Argyros & Ali Saleh Alshomrani, 2019. "High Convergence Order Iterative Procedures for Solving Equations Originating from Real Life Problems," Mathematics, MDPI, vol. 7(9), pages 1-12, September.
    4. Hernández-Verón, M.A. & Yadav, Sonia & Martínez, Eulalia & Singh, Sukhjit, 2021. "Solving nonlinear integral equations with non-separable kernel via a high-order iterative process," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    5. Janak Raj Sharma & Harmandeep Singh & Ioannis K. Argyros, 2022. "A Unified Local-Semilocal Convergence Analysis of Efficient Higher Order Iterative Methods in Banach Spaces," Mathematics, MDPI, vol. 10(17), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:2:d:10.1007_s13226-020-0409-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.