IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1839-d825424.html
   My bibliography  Save this article

A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton–Kantorovich Iterations-II

Author

Listed:
  • Samundra Regmi

    (Department of Mathematics, University of Houston, Houston, TX 77204, USA)

  • Ioannis K. Argyros

    (Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA)

  • Santhosh George

    (Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Karnataka 575 025, India)

  • Michael I. Argyros

    (Department of Computer Science, University of Oklahoma, Norman, OK 73019, USA)

Abstract

This article is an independently written continuation of an earlier study with the same title [Mathematics, 2022, 10, 1225] on the Newton Process (NP). This process is applied to solve nonlinear equations. The complementing features are: the smallness of the initial approximation is expressed explicitly in turns of the Lipschitz or Hölder constants and the convergence order 1 + p is shown for p ∈ ( 0 , 1 ] . The first feature becomes attainable by further simplifying proofs of convergence criteria. The second feature is possible by choosing a bit larger upper bound on the smallness of the initial approximation. This way, the completed convergence analysis is finer and can replace the classical one by Kantorovich and others. A two-point boundary value problem (TPBVP) is solved to complement this article.

Suggested Citation

  • Samundra Regmi & Ioannis K. Argyros & Santhosh George & Michael I. Argyros, 2022. "A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton–Kantorovich Iterations-II," Mathematics, MDPI, vol. 10(11), pages 1-12, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1839-:d:825424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannis K. Argyros, 2021. "Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manoj K. Singh & Ioannis K. Argyros, 2022. "The Dynamics of a Continuous Newton-like Method," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    2. Santhosh George & Jidesh Padikkal & Krishnendu Remesh & Ioannis K. Argyros, 2022. "A New Parameter Choice Strategy for Lavrentiev Regularization Method for Nonlinear Ill-Posed Equations," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    3. Ioannis K. Argyros & Samundra Regmi & Stepan Shakhno & Halyna Yarmola, 2022. "A Methodology for Obtaining the Different Convergence Orders of Numerical Method under Weaker Conditions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    4. Michael I. Argyros & Ioannis K. Argyros & Samundra Regmi & Santhosh George, 2022. "Generalized Three-Step Numerical Methods for Solving Equations in Banach Spaces," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    5. Samundra Regmi & Ioannis K. Argyros & Santhosh George & Christopher I. Argyros, 2022. "A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton-Kantorovich Iterations," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    6. Janak Raj Sharma & Harmandeep Singh & Ioannis K. Argyros, 2022. "A Unified Local-Semilocal Convergence Analysis of Efficient Higher Order Iterative Methods in Banach Spaces," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    7. Ioannis K. Argyros & Christopher Argyros & Johan Ceballos & Daniel González, 2022. "Extended Comparative Study between Newton’s and Steffensen-like Methods with Applications," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    8. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1839-:d:825424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.